New Mexico Department of Transportation DISTRICT 3

FY 2024 MS4 Annual Report

DRAFT

Reporting Period: July 1, 2023 – June 30, 2024

Prepared by:

BOHANNAN HUSTON, INC. 7500 JEFFERSON STREET NE ALBUQUERQUE, NM 87109

Annual Report Format

PROTE

National Pollutant Discharge Elimination System Stormwater Program MS4 Annual Report Format

Check box if you are submitting an individual Annual Report with one or more cooperative program	\times
elements.	

Check box if you are submitting an individual Annual Report with individual program elements only.

Check box if this is a new name, address, etc. \Box

1. MS4(s) Information

Rio Grande (Tijeras - Alameda)

Rio Grande (Tijeras - Alameda)

New Mexico Department of Transportation - District 3					
Name of MS4					
Tim	Trujillo	Drainage Engineer			
Name of Contact Person (First)	(Last)	(Title)			
505-373-4987	TimothyR.Trujillo@dot.nm.	gov			
Telephone (including area code)	E-mail				
P.O. Box 91750					
Mailing Address					
Albuquerque	NM	87109			
City	State	ZIP code			
What size population does your MS	54(s) serve? 741,318	NPDES number NMR04A010			
What is the reporting period for this	s report? (mm/dd/yyyy) From 07/0	1/2023 to 06/30/2024			
2. Water Quality Priorities					
- · · ·	ge to waters listed as impaired on a state	303(d) list? Xes No			
	s a wasteload allocation to your MS4(s).	IDL has been approved by EPA for each, and Use a new line for each impairment, and attach			
Impaired Water	Impairment A	Approved TMDL TMDL assigns WLA to MS4			
Rio Grande (Isleta -Tijeras)	E. coli	Yes No Yes No			
Rio Grande (Isleta -Tijeras)	DO, PCBs & Hg-Fish Consum	Yes No Yes No			

DO, Temp., PCBs & Hg-Fish C🖶

E. coli

Yes

X Yes

🛛 No

🗌 No

Yes

X Yes

🗌 No

No No

2. B. Continued

Impaired Water		Impairment	Approved	TMDL T	MDL assigns	WLA to MS4
Tijeras Arroyo NM-9000.A_00		Nutrients	Xes Yes	🗌 No	X Yes	🗌 No
Rio Gra	ande (Alameda - US550	PCBs & Hg-Fish Consumption	Yes	🔀 No	Yes	🗌 No
Rio Gra	ande (Alameda - US550)	E. coli	X Yes	🗌 No	X Yes	🗌 No
Rio Gra	ande (Alameda - US550)	Gross Alpha, adjusted & PCBs	Yes	No No	Yes	🗌 No
<u> </u>	What specific sources contr	ibuting to the impairment(s) are you	targeting in	your stormy	water program	?
		y and PCBs: no action, not directly re ith other MS4s. E. coli: NMDOT is pa				
D.	Do you discharge to any hig resource waters, or other sta	h-quality waters (e.g., Tier 2, Tier 3, te or federal designation)?	outstanding	g natural	Yes	🔀 No
E.	Are you implementing addit	ional specific provisions to ensure th	eir continue	d integrity?	Yes	🔀 No
	pollutants?	lic Participation gram targeting specific pollutants an sources and/or pollutants addressed b			∑ Yes n program?	🗌 No
		ducational displays, and outreach p tic systems, pet waste, and general s	-			azardous
С.		come(s) (e.g., quantified reduction ir e to your public education program de				blications)
	o the MRGSQT Outcomes Re QT Outcomes Report is inclu	port for a summary of educational ded in Attachment 1.	outreach ou	itcomes for	the year. The	draft
D.		mmittee or other body comprised of t gular input on your stormwater prog		nd other	Yes	No No
4. A.	Construction Do you have an ordinance of	r other regulatory mechanism stipula	ting:			
	Erosion and sediment control	ol requirements?			X Yes	🗌 No
	Other construction waste co	ntrol requirements?			Xes Yes	🗌 No
	Requirement to submit cons	truction plans for review?			X Yes	🗌 No
	MS4 enforcement authority	?			🔀 Yes	🗌 No
В.	Do you have written proced	ures for:				
	Reviewing construction plan	ns?			X Yes	🗌 No
	Performing inspections?				X Yes	🗌 No
	Responding to violations?				X Yes	🗌 No
C.	Identify the number of activ	e construction sites ≥ 1 acre in opera	tion in your	jurisdiction	at any time d	uring the
	reporting period. 7					
D.	How many of the sites ident	ified in 4.C did you inspect during th	is reporting	period?	7	
E.	Describe, on average, the fr	equency with which your program co	onducts con	struction site	e inspections.	
All pro	jects within NMDOT right-of	-way are inspected per the Constru	ction Genei	al Permit (C	GP) requirem	ients.

F.	Do you	prioritize	certain	construction	sites for	more f	requent in	nspections?

If Yes, based on what criteria?	
---------------------------------	--

5.

G. Identify which of the following types of enforcement actions you used during the reporting period for construction activities, indicate the number of actions, or note those for which you do not have authority:

	Yes Notice of violation	0	No Authority			
	Yes Administrative fines	0	No Authority			
	Yes Stop Work Orders	0	No Authority			
	Yes Civil penalties	0	No Authority	\boxtimes		
	Yes Criminal actions	0	No Authority	\boxtimes		
	Yes Administrative orders	0	No Authority	\boxtimes		
	Yes Other					
H.	Do you use an electronic tool (e.g., inspection results, and enforcemen jurisdiction?		,		X Yes	🗌 No
I.	What are the 3 most common types	s of violations document	ed during this r	eporting perio	od?	
	Ily NMDOT projects will have mino ement action. NMDOT has the abili		5 5			
J.	How often do municipal employee	s receive training on the	construction pr	ogram?)nce per 4 yea	ars
L		-	-			ars
J.	How often do municipal employee Illicit Discharge Elimination Have you completed a map of all o	utfalls and receiving wa	ters of your stor	m sewer	Once per 4 yea	
J. 5. A.	How often do municipal employees Illicit Discharge Elimination Have you completed a map of all of system? Have you completed a map of all s	utfalls and receiving way	ters of your stor er conveyances	m sewer	Once per 4 yea	🗌 No
J. 5. A. B.	How often do municipal employees Illicit Discharge Elimination Have you completed a map of all of system? Have you completed a map of all s sewer system?	utfalls and receiving wat torm drain pipes and oth our storm sewer system.	ters of your stor er conveyances 7	m sewer in the storm	Once per 4 yea	🗌 No
J. 5. A. B. C.	How often do municipal employees Illicit Discharge Elimination Have you completed a map of all of system? Have you completed a map of all s sewer system? Identify the number of outfalls in y Do you have documented procedure	utfalls and receiving war torm drain pipes and oth our storm sewer system. res, including frequency,	ters of your stor er conveyances 7 for screening o	rm sewer in the storm utfalls?	Once per 4 yea	□ No ⊠ No
J. 5. A. B. C. D. E.	How often do municipal employeer Illicit Discharge Elimination Have you completed a map of all of system? Have you completed a map of all s sewer system? Identify the number of outfalls in y Do you have documented procedure	utfalls and receiving war torm drain pipes and oth our storm sewer system. res, including frequency,	ters of your stor er conveyances 7 for screening o	rm sewer in the storm utfalls?	Once per 4 yea	□ No ⊠ No
J. 5. A. B. C. D. E.	How often do municipal employeer Illicit Discharge Elimination Have you completed a map of all of system? Have you completed a map of all s sewer system? Identify the number of outfalls in y Do you have documented procedur Of the outfalls identified in 5.C, ho ee Item 10, Additional Infer Of the outfalls identified in 5.C, ho obtained MS4 permit coverage?	utfalls and receiving war torm drain pipes and oth our storm sewer system. res, including frequency, w many were screened f	ters of your stor er conveyances 7 for screening o or dry weather	m sewer in the storm utfalls? discharges du	Once per 4 yea	□ No No No rting period?
J. 5. A. B. C. D. E. Se	How often do municipal employee: Illicit Discharge Elimination Have you completed a map of all of system? Have you completed a map of all s sewer system? Identify the number of outfalls in y Do you have documented procedur Of the outfalls identified in 5.C, ho ee Item 10, Additional Infc Of the outfalls identified in 5.C, ho obtained MS4 permit coverage?	utfalls and receiving war torm drain pipes and oth our storm sewer system. res, including frequency, w many were screened f w many have been scree All	ters of your stor er conveyances 7 for screening of for dry weather ened for dry wea	m sewer in the storm utfalls? discharges du	Once per 4 yea	□ No □ No rting period? e since you
J. J. S. A. B. C. D. E. S. F. G.	How often do municipal employeer Illicit Discharge Elimination Have you completed a map of all of system? Have you completed a map of all s sewer system? Identify the number of outfalls in y Do you have documented procedur Of the outfalls identified in 5.C, how ee Item 10, Additional Infer Of the outfalls identified in 5.C, how obtained MS4 permit coverage?	utfalls and receiving war torm drain pipes and oth our storm sewer system. res, including frequency, w many were screened f w many have been scree All ng outfalls for illicit disc	ters of your stor er conveyances 7 for screening of for dry weather ened for dry wea	m sewer in the storm utfalls? discharges du	Once per 4 yea	□ No No □ No rting period? e since you

Do you have an ordinance or other regulatory mechanism that provides authority for you I. Yes 🛛 No to take enforcement action and/or recover costs for addressing illicit discharges?

	J. During this reporting period, how many illicit discharges/illegal connections have you discovered?						
	K.	Of thos	e illicit discharges/illegal connections that have been discovered or reported, how	many have been	l		
		elimina	ted? 1				
	L.	How of	ten do municipal employees receive training on the illicit discharge program?	See Item 10, Ad	ditional		
6.	A.		water Management for Municipal Operations cormwater pollution prevention plans (or an equivalent plan) been developed for:				
	Al	l public p	parks, ball fields, other recreational facilities and other open spaces	Yes	🛛 No		
	Al	l municij	pal construction activities, including those disturbing less than 1 acre	Yes	🛛 No		
	Al	l municij	pal turf grass/landscape management activities	Yes	🔀 No		
	Al	l municij	pal vehicle fueling, operation and maintenance activities	X Yes	🗌 No		
	Al	l municij	pal maintenance yards	X Yes	🗌 No		
	Al	l municij	pal waste handling and disposal areas	Yes	🔀 No		
	Ot	her					
	B.	Are stor	rmwater inspections conducted at these facilities? Xes No				
	C.	If Yes,	at what frequency are inspections conducted? Twice per year				
	D.		ivities for which operating procedures or management practices specific to storm eveloped (e.g., road repairs, catch basin cleaning).	water managemen	nt have		
		sweepir enance.	ng, litter pickup, catch basin cleaning, culvert cleaning, scour repair, and water o	quality structure			
	E.	Do you inspecti	prioritize certain municipal activities and/or facilities for more frequent on?	Yes	🔀 No		
	F.	If Yes,	which activities and/or facilities receive most frequent inspections?				
	G.		nunicipal employees and contractors overseeing planning and implementation of ater-related activities receive comprehensive training on stormwater management	? Xes	🗌 No		
	Н.	If yes, c	lo you also provide regular updates and refreshers?	X Yes	🗌 No		
_	I.	If so, he	ow frequently and/or under what circumstances?				
0	ngoi	ng, as ne	eeded.				
7.	A.		erm (Post-Construction) Stormwater Measures have an ordinance or other regulatory mechanism to require:				
	Sit	te plan re	views for stormwater/water quality of all new and re-development projects?	Xes Yes	🗌 No		
	Lo	ng-term	operation and maintenance of stormwater management controls?	X Yes	🗌 No		
	Re	etrofitting	to incorporate long-term stormwater management controls?	Xes Yes	🗌 No		
	B.	If you l	nave retrofit requirements, what are the circumstances/criteria?				
			view STIP projects for opportunities to retrofit and incorporate appropriate cor t projects. NMDOT will not develop an inventory or priority ranking of potentia				
Ĺ	С		re your criteria for determining which new/re-development stormwater plans you s, projects disturbing greater than one acre, etc.)?	will review (e.g.	., all		
		DT will re	view STIP projects for opportunities to retrofit and incorporate appropriate cor t projects. NMDOT will not develop an inventory or priority ranking of potentia				

D.	Do you require water quality or quantity design standards or performance standards, either directly or by reference to a state or other standard, be met for new development and re-development?						
E.	Do these performance or design standards require that pre-development hydrology be met for:						
Flo	ow volumes	Yes	🔀 No				
Pe	ak discharge rates	Xes Yes	🗌 No				
Di	scharge frequency	Yes	🔀 No				
Flo	ow duration	Yes	🔀 No				
F.	Please provide the URL/reference where all post-construction stormwater management standar	rds can be fo	ound.				
Se	ee Item 10, Additional Information for URL/reference link						
G.	How many development and redevelopment project plans were reviewed during the reporting impacts to water quality and receiving stream protection?	period to ass	Sess				
H.	How many of the plans identified in 7.G were approved? See Item 1						
I.	How many privately owned permanent stormwater management practices/facilities were inspe	cted during	the				
	reporting period? N/A						
J.	How many of the practices/facilities identified in I were found to have inadequate maintenance	e? N/A					
K.	How long do you give operators to remedy any operation and maintenance deficiencies identif	ied during					
	inspections? N/A, NMDOT is the only op						
L.	Do you have authority to take enforcement action for failure to properly operate and maintain stormwater practices/facilities?	Yes 🔀	No				
M.	How many formal enforcement actions (i.e., more than a verbal or written warning) were taken	for failure	to				
	adequately operate and/or maintain stormwater management practices?						
N.	Do you use an electronic tool (e.g., GIS, database, spreadsheet) to track post-construction BMPs, inspections and maintenance?	Yes 🔀	No				
0.	Do all municipal departments and/or staff (as relevant) have access to this tracking system?	Yes 🔀	No				
P.	How often do municipal employees receive training on the post-construction program?	e per 4 year	s				
A.	Program Resources What was the annual expenditure to implement MS4 permit requirements this reporting period	? \$1,276	710				
В.	What is next year's budget for implementing the requirements of your MS4 NPDES permit?	\$1,300,00	00				
C.	This year what is/are your source(s) of funding for the stormwater program, and annual revenue	ie (amount o	or				
	percentage) derived from each? Source: Amount \$	⊐ OR % г					
	DOT Budget		100				
	Source: Amount \$	OR %					
	Source: Amount \$						
D.	How many FTEs does your municipality devote to the stormwater program (specifically for in	nplementing	the				

stormwater program; not					$m_{1} = m_{1} = m_{1} = \frac{1}{1} + \frac{1}{1} + \frac{1}{1} = \frac{1}{1} = \frac{1}{1} + \frac{1}{1} = $
stormwater program, not	municipai	employees	with other	primary	responsibilities)/
storini, not	mannerpar	employees	min ouror	primary	responsionnes).

8.

1

E.	Do you share program implementation responsibilities with any other entities?	🔀 Yes	🗌 No	
----	---	-------	------	--

Entity	Activity/Task/Responsibility	Your Oversight/Accountability Mechanism
	MRG Stormwater Quality Team	See Item 10, Additional Information for a more
	MS4 Technical Advisory Group (TAG)	complete response of cooperative programs
	Cooperative sampling program (CMC)	

9. Evaluating/Measuring Progress

A. What indicators do you use to evaluate the overall effectiveness of your stormwater management program, how long have you been tracking them, and at what frequency? These are not measurable goals for individual management practices or tasks, but large-scale or long-term metrics for the overall program, such as macroinvertebrate community indices, measures of effective impervious cover in the watershed, indicators of in-stream hydrologic stability, etc.

Indicator	Began Tracking (year)	Frequency	Number of Locations
<i>Example:</i> E. coli	2003	Weekly April–September	20
General Public Surveys	2014	typically two times per year	2
Nutrient Study	2014	Once per permit term	6
Adopt-a-highway tracking	pre MS4 Permit	monthly	12 roadways
Maintenance activity tracking	pre MS4 Permit	weekly	31 roadways
See Item 10, Additional Information			

B. What environmental quality trends have you documented over the duration of your stormwater program? Reports or summaries can be attached electronically, or provide the URL to where they may be found on the Web.

See Item 10, Additional Information for a more complete response

10. Additional Information

Please attach any additional information on the performance of your MS4 program, including information required in Parts I.C, I.D, and III.B. If providing clarification to any of the questions above, please provide the question number (e.g., 2C) in your response.

Certification Statement and Signature

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Federal regulations require this application to be signed as follows: **For a municipal, State, Federal, or other public facility**: by either a principal executive or ranking elected official.

Signature

Paul Brasher, P.E., District 3 Engineer

Date (mm/dd/yyyy)

No No

Yes

Name of Certifying Official, Title

DRAFT

Date:October 7, 2024To:EPA Region 6From:Tim Trujillo, NMDOT District 3 - Drainage EngineerSubject:NPDES Stormwater Program MS4 Annual Report
Item 10: Additional Information
New Mexico Department of Transportation, District 3
NPDES Permit NMR04A000, Permit Tracking Number ID NMR04A010

The items below provide additional information for each corresponding item in the MS4 Annual Report Format PDF for the reporting period July 1, 2023, to June 30, 2024.

1. The total population listed is 741,318 for the City of Albuquerque, which is classified as an Urbanized Area (UA) within NMDOT District 3. The 2010 U.S. Census population values for the UAs and urban clusters were used for this population estimate.

NPDES Permit number: NMR04A000, Permit Tracking Number ID NMR04A010.

2B: Impaired Waters – Text box in the Environmental Protection Agency (EPA) Annual Report Format PDF form truncates the text. For clarity, impaired waters that the NMDOT District 3 discharges to within the City of Albuquerque MS4 area are summarized in Table 1 on page 2 of this memo. The impaired waters designations shown in Table 1 are from New Mexico Environment Department (NMED) Surface Water Quality Bureau 2022-2024, State of New Mexico Clean Water Act (CWA) §303(d)/§305(b) Integrated List & Report approved by EPA on April 26, 2022, and the 2024-2026 State of New Mexico CWA §303(d)/§305(b) Integrated List & Report approved by EPA on May 13, 2024. For the waters located within the NMDOT District 3 area, the impairments and Total Maximum Daily Loads (TMDLs) did not change from the 2022-2024 report to the 2024-2026 report. These reports were approved after the Middle Rio Grande (MRG) MS4 Permit went into administrative continuance. Previous impairment lists are available on the NMED Surface Water Quality website (https://www.env.nm.gov/surface-water-guality/303d-305b/). The Tijeras Arroyo (Four Hills Bridge to headwaters) TMDL for nutrients was finalized in 2017 by NMED and is listed in Table 1. However, since this TMDL was released after the MRG MS4 Permit (NMR04A000) December 2014 issuance date, nutrients in the Tijeras Arroyo are treated as an impairment without a TMDL for the purposes of permit compliance.

Impaired Water*	Impairment	Approved TMDL?	TMDL Assigns WLA for MS4?
	E. coli	Yes	Yes
Rio Grande NM 2105_50	Dissolved Oxygen	No	N/A
(Isleta Pueblo boundary to Tijeras Arroyo)	sleta Pueblo boundary to PCBs – Fish Consumption		N/A
	Mercury (Hg) – Fish Consumption Advisory	No	N/A
	E. coli	Yes	Yes
	Dissolved Oxygen	No	N/A
Rio Grande NM-2105.1_51 (Tijeras Arroyo to Alameda Bridge)	PCBs – Fish Consumption Advisory	No	N/A
	Temperature	No	N/A
	Mercury (Hg) – Fish Consumption Advisory	No	N/A
Tijeras Arroyo NM-9000.A_001 (Four Hills Bridge to headwaters)	(Four Hills Bridge to Nutrients		Yes**
	E. coli	Yes	Yes
	Gross Alpha, Adjusted	No	N/A
Rio Grande NM-2105.1_00 (non-pueblo Alameda Bridge to HWY 550 Bridge)	n-pueblo Alameda Bridge to Advisory		N/A
	PCBs	No	N/A
	Mercury (Hg) – Fish Consumption Advisory	No	N/A

Table 1: Impaired Waters Summary Table

*Impaired water designation from New Mexico Environment Department (NMED) Surface Water Quality Bureau 2022-2024 and the 2024-2026 State of New Mexico CWA §303(d)/§305(b) Integrated Lists & Reports.

**A TMDL for nutrients in the Tijeras Arroyo was finalized on 10/12/2017. Since this TMDL was released after the Middle Rio Grande (MRG) MS4 Permit issuance, for the purposes of permit compliance, nutrients in the Tijeras Arroyo are treated as an impairment without a TMDL.

2C: NMDOT maintenance activities target collection, removal, and disposal of floatables, roadside litter, and sediment. NMDOT compliance with the Construction General Permit (CGP) requirements targets sedimentation concerns within the watershed.

NMDOT does not contribute to the temperature, gross alpha, PCB, or mercury impairments, as these pollutants are not directly related to NMDOT roadways or operations.

For E. coli, MS4s can be significant sources of E. coli because urban runoff can be affected by pet waste, illicit sewer connections, and failing septic systems – all of which are not directly related to NMDOT roadways or operations. NMDOT is a member of the Mid-Rio Grande Stormwater Quality Team (MRGSQT) which organizes education and outreach related to reducing pet waste, preventing illicit sewer connections, and repairing failing septic systems (<u>http://www.keeptheriogrand.org/</u>). In addition, NMDOT requires utility permits to help ensure that illicit utility connections do not occur.

For nutrients, NMDOT is working with Bernalillo County and the City of Albuquerque related to nutrient concerns in the Tijeras Arroyo (also referred to as Tijeras Creek). NMDOT District 3 is a partner in the <u>Tijeras Creek Watershed Collaborative</u> – an interagency initiative focused on preserving and improving the Tijeras Creek Watershed ecological and cultural landscapes through public education and on-the-ground restoration.

- 2. No additional comments on information provided on the MS4 Annual Report Form. The MRGSQT Outcomes Report provides a summary of the educational outreach efforts and outcomes within the watershed. The Outcomes Report is included as Attachment 1 to this MS4 Annual Report. *Please note that this Outcomes Report is not yet complete and is not included with the Draft MS4 Annual Report.*
- 3. 4A: Regulatory Mechanisms:

NMDOT Standard Specifications for Highway and Bridge Construction – web link: <u>https://dot.state.nm.us/content/nmdot/en/standards.html#</u>, construction contract, and NPDES Manual (Revision 4, 10/2023) – web link: <u>https://www.dot.nm.gov/wp-</u> <u>content/uploads/2024/01/NMDOT-NPDES-Manual-Rev-4-2023.pdf</u>. NMDOT led the effort to update the NPDES Manual in FY 2020, and again in FY 2023-FY 2024. The FY 2020-FY 2021 update included updated regulatory information and the addition of Green Stormwater Infrastructure (GSI) and Low Impact Development (LID) Best Management Practices. The FY 2023-FY 2024 update addressed the Construction General Permit (CGP) section of the manual to reflect updates from the 2022 CGP.

In FY 2024, NMDOT finalized an Erosion and Sediment Control Field Guide to assist NMDOT staff and inspectors, as well as contractors, with improved CGP compliance. This field guide includes information on CGP requirements as well as inspection information on best management practices for construction phase temporary erosion and sediment control. NMDOT printed 240 copies of the flip book field guide for their staff and contractors; it can be found online here: <u>https://www.dot.nm.gov/wp-content/uploads/2024/07/2024-05-23-Erosion-and-Sediment-Control-Field-Guide_FINAL-FOR-WEB.pdf</u>.

4B: NMDOT Standard Specifications for Highway and Bridge Construction and EPA SWPPP inspection form (available in NPDES Manual). Links provided in 4A above.

4C: In FY 2024, there were seven (7) active NMDOT construction projects that were within the MS4 boundary and disturbed greater than (>) one (1) acre of bare ground. As a result, there were seven (7) construction sites that required inspections during this reporting period.

4J: NMDOT NPDES/SWPPP Qualified training is required every four (4) years, but is typically offered multiple times per year.

4. **5A**: An NMDOT outfalls map for the City of Albuquerque MS4 area has been developed. There have not been any updates to these in FY 2024. This map is available upon request.

5B: The vast majority of potential NMDOT storm drain outlets are short culverts under the roadways, and therefore do not need to be mapped to determine upstream sources. The limited networked storm drains within NMDOT ROW capture only NMDOT runoff. Mapping these will serve no benefit in locating illicit discharges entering NMDOT ROW from outside its jurisdiction. Several MS4s within the Middle Rio Grande have storm drain maps that include many of the NMDOT roadway drainage structures within the MS4 area.

5E & 5F: There are seven (7) identified outfalls. One (1) of the seven (7) outfalls discharges into an irrigation drain. During two (2) inspections over the permit term, the irrigation drain had been carrying water and the outfall was not able to be screened. NMDOT has determined that this drain is never dry, so outfall observation will not be possible at this location.

5H: NMDOT has no authority to issue an ordinance or other regulatory mechanism to prohibit illicit discharges.

5I: NMDOT has no authority to issue an ordinance or other regulatory mechanism to take enforcement action or recover costs for addressing illicit discharges.

5J & 5K: No illicit discharges were discovered during this reporting period.

5L: NMDOT does not have a stand-alone illicit discharge training program – this topic is covered in the general stormwater training, spill prevention and response training, as well as in the maintenance activity performance guidelines (such as emergency repairs/clean-up and litter pickup). All employees also have access to an illicit discharge educational brochure and report form –

https://www.dot.nm.gov/wp-content/uploads/2021/10/Illicit-Discharge-Brochure-and-Form.pdf.

- 6. **6A**:
 - 1. NMDOT does not have parks or ball fields.
 - 2. All projects greater than (>) one (1) acre are required to develop a SWPPP; projects less than (<) one (1) acre are dealt with on a case-by-case basis.
 - 3. NMDOT has negligible turf and landscaping.

- 4. NMDOT has equivalent plans for vehicle fueling and operation and maintenance activities.
- 5. NMDOT has developed SWPPP type documents for the NMDOT facilities/maintenance yards within the MS4 area.
- 6. NMDOT does not have municipal waste handling facilities.

6B: Stormwater inspections are typically conducted by NMDOT once or twice per year.

6G: All employees who approve drainage plans and final stabilization temporary erosion control plans receive comprehensive training on stormwater management.

- 7. **7E**:
 - 1. Pre-development hydrology flow volumes are not limited by NMDOT design standards. Stormwater retention is required within MS4 areas as required in the MS4 Permits (currently required in the MRG Permit and anticipated in the regulations in the forthcoming state-wide permit).
 - 2. Peak discharge rate limits are addressed in the current *Drainage Design Manual* (DDM).
 - 3. Discharge frequency is not limited by NMDOT design standards.
 - 4. Flow duration is not limited by NMDOT design standards.

7F: The web page link to NMDOT's *Drainage Design Manual*, which includes postconstruction stormwater management standards, is: <u>https://www.dot.nm.gov/infrastructure/program-management/drainage-design/</u>

In FY 2024, NMDOT finalized a Green Stormwater Infrastructure (GSI) Maintenance Field Guide and GSI Maintenance Manual to assist NMDOT staff and maintenance contractors with improved maintenance of drainage facilities with GSI features, which have both engineered and biological components and require maintenance. GSI features are designed to capture, treat, and infiltrate stormwater. They provide other benefits, such as shade, habitat, and beauty. NMDOT printed over 200 copies of the flip book field guide for their staff and contractors and it can be found online here: <u>https://www.dot.nm.gov/wp-content/uploads/2024/07/2024-05-23-GSI-Maintenance-Field-Guide_FINAL-FOR-WEB.pdf</u>. The GSI Maintenance Manual is located online here: <u>https://www.dot.nm.gov/wp-content/uploads/2024/07/NMDOT-GSI-Maintenance-Manual_Final.pdf</u>.

7G & 7H: Plan reviews are tracked by NMDOT for commercial access drainage and grading projects, NMDOT internal projects, and local projects. A total of TBD commercial access drainage and grading projects were reviewed by NMDOT District 3 in FY 2024. There were TBD NMDOT internal projects reviewed within the D3 urbanized area in FY 2024.

7I & 7J: Not applicable; there are no privately-owned facilities within NMDOT jurisdiction.

7K through M: Not applicable; NMDOT is the only operator post-construction and as a result, no enforcement authority or action is required.

- 8. **8A**: Dollar amounts shown reflect estimated expenditures from July 1, 2023, through June 30, 2024. Expenditures shown reflect consultant fees, contributions to the Mid-Rio Grande Stormwater Quality Team (MRGSQT) and the Stormwater Quality Sampling Program, and costs for maintenance activities (litter pickup, street sweeping, drainage structure cleaning, etc.) within the MS4 boundary. The costs of the Drainage Design & Environmental Bureau's employee salaries, training, and travel expenses were **not** included in this MS4 program resources estimate.
 - 1. Consultant fees = \$49,010
 - 2. Stormwater Quality Sampling and MRGSQT = \$16,100
 - 3. Roadway Sweeping = \$525,600
 - 4. Maintenance and Litter Pickup activities = \$686,000
 - 5. Total = \$1,276,710

8B: Next year's budget for implementing NMDOT District 3's MS4 NPDES program is anticipated to be similar to this year's expenditures.

8C: NMDOT has no annual revenue or direct funding source for the MS4 program. The MS4 program budget (amounts shown) is allocated out of the general funding for the DOT.

8E: The text box in the EPA Annual Report PDF form does not allow enough space to enter a complete response. Complete response (Note – Table continues on p. 8):

Entity	Activity/Task/ Responsibility	Your Oversight/ Accountability Mechanism
NMDOT – District 3 Bernalillo County AMAFCA City of Albuquerque UNM Sandoval County Village of Corrales City of Rio Rancho Village of Los Ranchos Kirtland Air Force Base Town of Bernalillo SSCAFCA ESCAFCA ESCAFCA Sandia National Laboratory (DOE)	MS4 Technical Advisory Group (TAG) – various cooperative activities	Intergovernmental Agreement
NMDOT – District 3 AMAFCA City of Albuquerque Bernalillo County Village of Corrales City of Rio Rancho Village of Los Ranchos Town of Bernalillo SSCAFCA ESCAFCA ESCAFCA Sandoval County Ciudad Soil and Water Conservation District	Mid-Rio Grande Stormwater Quality Team (MRGSQT)	Intergovernmental Agreement
NMDOT – District 3 Bernalillo County AMAFCA City of Albuquerque UNM Sandoval County Village of Corrales City of Rio Rancho Village of Los Ranchos Town of Bernalillo SSCAFCA ESCAFCA	MS4 Compliance Monitoring Cooperative (CMC) – Wet Weather Monitoring	Intergovernmental Agreement
NMDOT – District 3 Bernalillo County Village of Los Ranchos AMAFCA	Development Review – Construction and Post- Construction Stormwater Management	Intergovernmental Agreement

Entity	Activity/Task/ Responsibility	Your Oversight/ Accountability Mechanism
NMDOT – District 3 Bernalillo County ABCWUA City of Albuquerque AMAFCA Village of Los Ranchos	Capacity, Management, Operations and Maintenance (CMOM) Plan Spill Response, emphasis on Fats, Oils and Grease (FOG)	Intergovernmental Agreement
NMDOT – District 3 Bernalillo County City of Albuquerque AMAFCA	Investigation and Resolution of IDDE	Shared without cost allocation

9. 9A: NMDOT is a non-traditional MS4 and evaluating the overall effectiveness of its stormwater management program focuses on metrics collected specific to its roadway facilities. NMDOT tracks general public surveys with the Middle Rio Grande Stormwater Quality Team (MRGSQT) and nutrient study results for the Tijeras Arroyo with the City of Albuquerque and Bernalillo County. Large scale watershed or in-stream hydrologic studies are beyond the jurisdiction and reach of NMDOT. NMDOT tracks adopt-a-highway data (public participation litter removal program) including the number of volunteers and amount of trash removed for each location. In addition, through NMDOT's Maintenance Management System (MMS) system, NMDOT tracks all maintenance activities in each district including miles of roadway sweeping, litter removal, and drainage structure cleanings. Tracking this data assists NMDOT in evaluating the overall effectiveness of its activities related to stormwater management and MS4 Permit compliance.

9B: NMDOT has not been directly involved with creating these documents. Upon request, a list may be compiled for documents relating to this item. Trends and data collected by the CMC have been provided to New Mexico Environment Department (NMED) for additional analysis. Some additional information may also be found at http://www.keeptheriogrand.org/resources/.

10. Supporting documents similar to those provided in the attachments of previous MS4 Annual Reports have been compiled and are on file at NMDOT offices. They have not been included in this report to keep this submittal a manageable size. These supporting documents are available upon request.

Attachments:

- Attachment 1 FY 2024 MRGSQT Outcomes Report Please note that this report is not yet complete and is not included with the Draft MS4 Annual Report.
- Attachment 2 Compliance Monitoring Cooperative (CMC) FY 2024 Stormwater Monitoring Memo

Attachment 1 FY 2024 MRGSQT Outcomes Report

Please note that this report is not yet complete and is not included with the Draft MS4 Annual Report Attachment 2 Compliance Monitoring Cooperative (CMC) – FY 2024 Stormwater Monitoring Memo

7500 Jefferson Street NE Albuquerque, NM 87109

> 505.823.1000 bhinc.com

MEMORANDUM

DATE: 9/6/2024

TO Patrick Chavez, AMAFCA

- FROM: Sarah Ganley, PE, ENV-SP Savannah Maynard Emma Adams, El
- SUBJECT:CMC Dry Season, Wet Weather Stormwater Monitoring
Data Verification, Analysis Results Database, and Reporting Memo
FY 2024 Dry Season (Nov. 1, 2023 to June 30, 2024)

NOTIFICATION OF IN-STREAM WATER QUALITY EXCEEDANCES

For downstream notification purposes, the following parameters for in-stream samples taken in the Rio Grande for the FY 2024 dry season had results that exceeded applicable water quality standards (WQSs) for four (4) samples of E. coli, two (2) samples of polychlorinated biphenyls (PCBs), and one (1) sample of dissolved copper. Table 1 summarizes the samples and the applicable WQSs that were exceeded. Additional details on the sampling results shown in Table 1 are provided in this memo. In addition, this memo includes a discussion of two (2) sample results with dissolved oxygen (DO) that were below WQSs, likely due to composite field-testing.

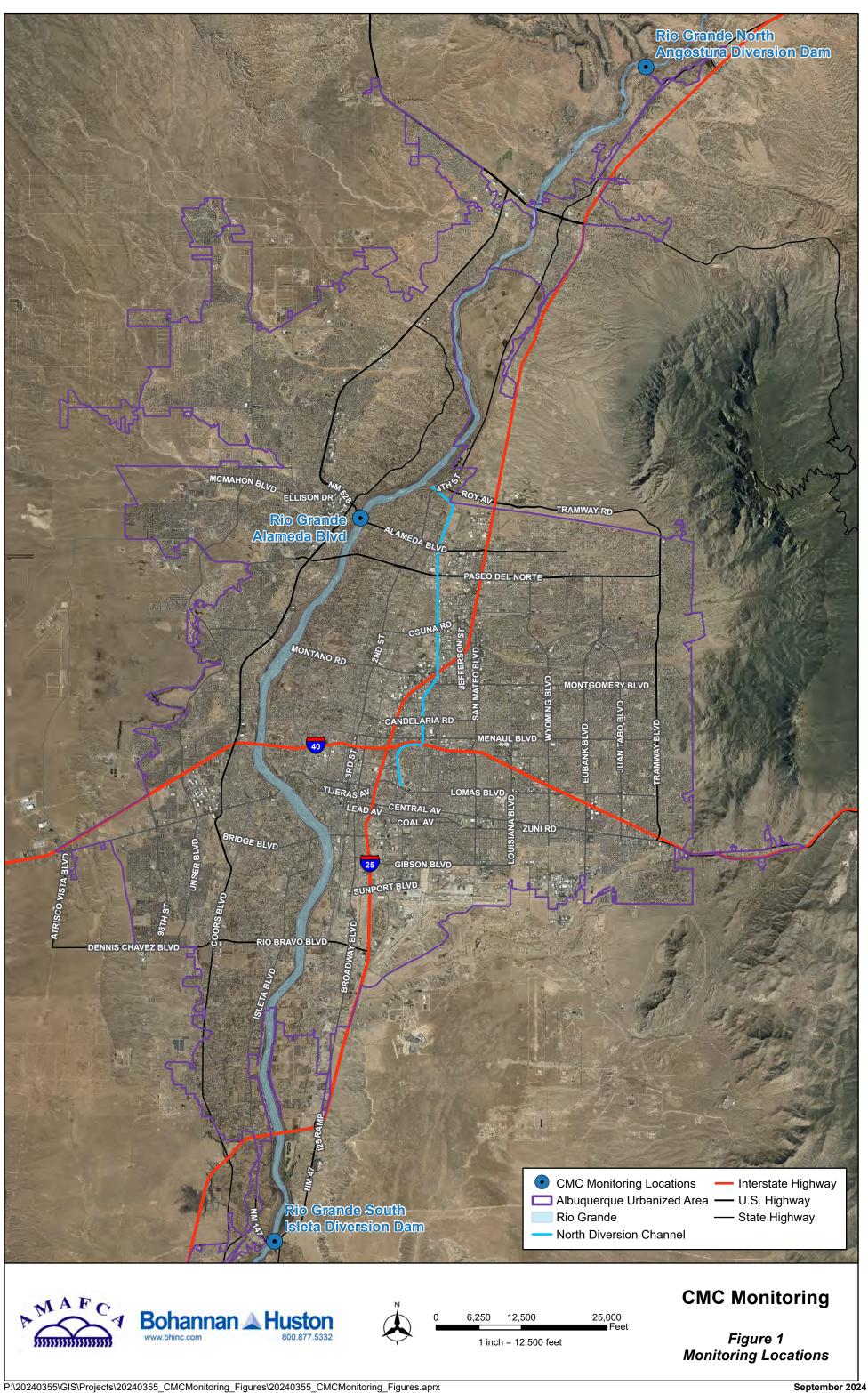
	Parameters, Applicable Water Quality Standard (WQS), and Results Exceeding Applicable WQS			
	E. coli PCBs		Dissolved Copper	
	WQS: 88 MPN	WQS: 0.00017 ug/L	WQS:	
	(CFU/100 mL)	Pueblo of Isleta	Acute / Chronic:	
Sampling Date Location	Duchlo of Islata		8 ug/L / 12 ug/L Aquatic Life Acute/Chronic Values are based on a hardness for Pueblo of Isleta, Pueblo of Sandia and New Mexico WQSs	
12/14/2023 Rio Grande South Isleta Dam	Exceeded 235.9 MPN (CFU/100 mL)	Exceeded 0.0002908 ug/L	No Exceedance	
6/26/2024 Rio Grande North Angostura	Exceeded 108 MPN (CFU/100 mL)	No Exceedance	No Exceedance	
6/26/2024 Rio Grande at Alameda	Exceeded 97 MPN (CFU/100 mL)	Not Tested	Not Tested	
6/27/2024 Rio Grande South Isleta Dam	Exceeded 644 MPN (CFU/100 mL)	Exceeded 0.000323 ug/L	Exceeded 10 ug/L	

Table 1: Parameters Detected Above Applicable Water Quality Standards CMC FY 2024 Dry Season Monitoring

OVERVIEW OF STORMWATER MONITORING ACTIVITY

Bohannan Huston, Inc. (BHI) has been tasked to perform water quality services for the Compliance Monitoring Cooperative (CMC) Stormwater Data Verification, Database, and Reporting for the Dry Season, Wet Weather Stormwater Quality Monitoring Program for Fiscal Year (FY) 2024 (Nov. 1, 2023 to June 30, 2024). The scope of work for this task includes data verification of the stormwater laboratory analysis results, compiling the analysis results into a database, and calculating the E. coli loading to compare with the Waste Load Allocation (WLA) for qualifying storm events. The stormwater compliance monitoring was conducted separately by Daniel B. Stephens & Associates, Inc. (DBS&A) and is not a part of this BHI task. This task is being conducted to assist the CMC members with their comprehensive

monitoring and assessment program for compliance under the 2014 Middle Rio Grande (MRG) Watershed Based Municipal Separate Storm Sewer System (MS4) Permit, NPDES Permit No. NMR04A000 ("WSB MS4 Permit").


The WSB MS4 Permit entered Administrative Continuance in December 2019 when U.S. Environmental Protection Agency (EPA) Region 6 did not issue a new MS4 Permit before the current WSB MS4 Permit's expiration date. The MRG Technical Advisory Group (TAG) sent EPA a letter dated October 15, 2019, acknowledging Administrative Continuance after the expiration date of the 5-year WSB MS4 Permit term. Until a new WSB MS4 Permit is issued, there are no compliance monitoring requirements for the CMC in the Rio Grande. As identified in the WSB MS4 CMC Monitoring Plan, the WSB MS4 Permit required a minimum of seven (7) storm events be sampled at both the Rio Grande North and Rio Grande South locations (refer to Figure 1, page 4). All MS4 Permit required samples have been obtained by the CMC, as well as six (6) additional samples obtained during Administrative Continuance (FY 2021 through FY 2024); all 13 CMC samples are summarized in Table 2 below.

Storm Events Required to Sample	CMC-WSB MS4 Permit Required Samples per Season	FY (Date) Samples Obtained for CMC	
1	#1 Wet Season	FY 2017 (8/10/2016)	
2	#2 Wet Season	FY 2017 (9/12/2016)	
3	#3 Wet Season	FY 2017 (9/21/2016)	
4	#1 Dry Season	FY 2017 (11/21/2016)	
5	#2 Dry Season	FY 2019 (3/13/2019)	
6	Any Season	FY 2018 (Wet Season - 7/27/2017)	
7	Any Season	FY 2018 (Wet Season - 9/27/2017)	
Not Required	Wet Season	FY 2021 (10/28/2020)	
Not Required	Dry Season	FY 2021 (4/28/2021)	
Not Required	Wet Season	FY 2022 (9/1/2021)	
Not Required	Wet Season	FY 2023 (10/5/2022)	
Not Required	Dry Season	FY 2024 (12/14/2023)	
Not Required	Dry Season	FY 2024 (6/26/2024)	

Table 2: CMC Sample SummaryCompared to WSB MS4 Permit Requirements

During the WSB MS4 Permit Administrative Continuance, the CMC members chose to continue sampling within the Rio Grande to support their MS4 program needs and gather additional data in support of the future WSB MS4 Permit compliance. This memo reports on the wet weather stormwater monitoring activity for the FY 2024 dry season (Nov. 1, 2023 to June 30, 2024).

The CMC Excel database was updated with the FY 2024 dry season monitoring data as results were received. The database contains sample location, sample date, analyses conducted, methods used, applicable surface WQSs, WSB MS4 Permit required Minimum Qualification Levels (MQLs) and results.

Author: mcrooks

SUMMARY OF THE CMC SAMPLING PLAN

Sampling Parameters:

Samples from both the Rio Grande North and Rio Grande South monitoring locations were analyzed for the parameters defined in the EPA approved WSB MS4 CMC Monitoring Plan, May 5, 2016. The parameter list for both locations, which is intended to characterize stormwater discharges into the river, is as follows:

Total Suspended Solids (TSS) Total Dissolved Solids (TDS) Chemical Oxygen Demand (COD) Biological Oxygen Demand – 5-day (BOD₅) Dissolved Oxygen (DO) Oil & grease (N-Hexane Extractable Material) E. coli рΗ Total Kjeldahl Nitrogen (TKN) Nitrate plus Nitrite **Dissolved Phosphorus** Ammonia as Nitrogen Nitrogen (Total Nitrogen) Phosphorous (Total Phosphorous) Polychlorinated Biphenyls (PCBs - Method 1668A) Gross Alpha, adjusted Tetrahydrofuran Benzo(a)pyrene Benzo(b)fluoranthene (3, 4 Benzofluoranthene) Benzo(k)fluoranthene Chrysene Indeno (1,2,3-cd) Pyrene Dieldrin Pentachlorophenol Benzidine Benzo(a)anthracene Dibenzofuran Dibenzo(a, h)anthracene Chromium VI (Hexavalent) **Dissolved Copper Dissolved Lead** Bis (2-ethylhexyl) phthalate Conductivity Temperature Hardness (as CaCO₃) Per-and polyfluoroalkyl substances, known as PFAS

Hardness (as CaCO₃) was added to the parameter list to allow dissolved metal results to be compared to the applicable WQSs. Per the WSB MS4 Permit, DO, pH, conductivity, and temperature are required by to be analyzed in the field during sample collection, which was conducted by DBS&A, within 15 minutes of sample collection. All E. coli samples were submitted to the laboratory within eight (8) hours of collection in order to meet the specified hold time. Testing for PFAS was added to the parameter list by the CMC in 2024, and the June 2024 sample included PFAS testing.

Sampling Locations:

The sampling locations are shown in Figure 1, page 4.

Rio Grande North – In-stream sampling within the Rio Grande was performed upstream of the Angostura Diversion Dam at the north end of the watershed. The location is upstream of all inputs from the Urban Area (UA) to the river and provides the background water conditions.

Rio Grande South – In-stream sampling within the Rio Grande was performed at the Isleta Bridge at the south end of the watershed. The location is downstream of all inputs from the UA to the river and provides the downstream water conditions. These locations have been accepted by EPA and the New Mexico Environment Department (NMED) to meet the WSB MS4 Permit requirements in Part III.A.

During this FY 2024 dry season, two (2) E. coli samples were collected within the Rio Grande at Alameda Blvd. This is the location of the NMED defined stream segment divide (refer to Figure 6). This sample point was added after discussion with NMED in February 2017, regarding potential refinements to E. coli loading calculations.

Sample Collection:

As mentioned previously, sample collection for the CMC was conducted by DBS&A (through a separate on-call contract). Since BHI was not involved in the sample collection, this task and memo do not address the details of the methodologies regarding sampling, determining if an event was a qualifying storm event, or determining the timing of the hydrograph at the Rio Grande Alameda and Rio Grande South locations.

DBS&A provided BHI their field notes and field sample data (temperature, DO, specific conductivity, and pH) for the FY 2024 dry season sampling. AMAFCA provided BHI the completed laboratory analysis reports from Eurofins Environment Testing for this monitoring season.

Quality Assurance Project Plan (QAPP):

AMAFCA provided BHI with the Draft Quality Assurance Project Plan (QAPP) for the CMC, dated June 14, 2016. DBS&A followed this QAPP during sample collection. BHI used this QAPP and the included standard operating procedures (SOPs) for the data verification and validation.

MONITORING ACTIVITY & LAB ANALYSIS SUMMARY

The list below provides a summary of the CMC comprehensive monitoring program activities completed for the FY 2024 dry season from November 2023 through June 2024. Two (2) qualifying storm events were sampled and analyzed during the FY 2024 dry season.

- December 13-14, 2023 Qualifying Storm Event. Samples were collected December 13, 2023, at the Rio Grande North and Alameda Blvd. locations beginning at 12:00 p.m. and 1:25 p.m., respectively. These samples were sent to the laboratory for E. coli testing. The CMC determined that the storm event beginning December 13, 2023 was a qualifying storm event. A Rio Grande South sample was collected beginning at 2:45 p.m. on December 14. The samples from the North (collected December 13) and South (collected December 13) locations were taken to Eurofins Environment Testing for full parameter testing.
- June 26-27, 2024 Qualifying Storm Event. Samples were collected June 26, 2024 at the Rio Grande North and Alameda Blvd. locations beginning at 3:05 p.m. and 4:28 p.m., respectively. These samples were sent to the laboratory for E. coli testing. The CMC determined that the storm event beginning June 26, 2024 was a qualifying storm event. A Rio Grande South Sample was collected at 1:10 p.m. on June 27, 2024. The samples from the North (collected June 26) and South (collected June 27) were taken to Eurofins Environment Testing for full parameter testing.

STORMWATER QUALITY DATABASE FOR CMC

As stated previously, there were two (2) qualifying storm events during the FY 2024 dry season, wet weather monitoring sampled by the CMC, which occurred December 13-14, 2023 and June 26-27, 2024. DBS&A's field notes containing DO, pH, conductivity, and temperature measurements, as well as sampling comments have been received, and field results have been added to the database. Additionally, the Eurofins Environment Testing reports for the corresponding time period have been received, added to the database, and are provided with this memo (Attachment 1). The laboratory reports attached to this memo have BHI added comments including the field parameter measurements and other relevant notes related to the laboratory report.

Database Data Entry:

The CMC Excel database was updated with the FY 2024 dry season, wet weather monitoring data. The database contains sample locations, sample date, analyses conducted, methods used, applicable surface water quality standards (WQSs), WSB MS4 Permit required Minimum Quantification Levels (MQL), and analysis results. The database was updated under this task to include the Rio Grande at Alameda sample location. Applicable surface WQSs found in New Mexico Administrative Code (NMAC) 20.6.4, as well as the Pueblo of Isleta WQSs, are entered in the Excel database for comparison purposes with testing results. There is an indicator in the database to show if the monitoring results exceed the applicable surface WQS. An exceedance is not a violation of the WSB MS4 Permit, as the Permit does not have numeric discharge limitations. These ">WQ Standard" flags simply and quickly show the CMC members where the results of the lab data exceed the applicable WQS.

Water quality data was entered into the database upon receipt of the lab reports. All data entered into the database is initially denoted with a "P" to indicate that it is provisional and has not been through the verification and validation process yet. Full parameter analyses of qualifying storm events for both Rio Grande North and Rio Grande South locations were entered respectively into the database. The E. coli only samples from the Rio Grande Alameda location were also entered into the database.

Data Verification and Validation:

The Eurofins Environment Testing analysis reports were provided to BHI by AMAFCA. The lab reports also contain the Chain of Custody for the submitted samples. Field data was requested by and provided to BHI by DBS&A. Data verification and validation (V&V) was conducted by BHI on all field notes, lab reports, and Chain of Custody documents in accordance with the CMC WQS Operating Procedure (SOP) #2, which is part of the existing CMC QAPP Draft, June 14, 2016. These procedures are based on EPA Guidance for Environmental Data Verification and Validation (EPA, 2008).

As stated in the QAPP, the V&V process was completed by a different person than the one who entered the data into the database. The V&V process included use of the *Data Verification and Validation Worksheet* (provided in the QAPP). For this task, field data was verified first, confirming all field notes were complete. BHI handled field parameter questions directly with DBS&A. Chemical data verification began as soon as the lab reports were received, checking that all parameters were tested and looking for any obvious exceedances of WQSs. Other steps listed on the *Data Verification and Validation Worksheet* were completed after all data from the laboratory was received and entered into the database. Sample blank results were reviewed to identify potential contamination during field processing or transport. Replica/duplicate samples were evaluated based on relative percent difference (as described in more detail in the QAPP) to determine the variability of the samples.

All CMC FY 2024 dry season data met the appropriate QA/QC requirements for the December 2023 samples. For the June 2024 samples, the lab reports did not provide results for ammonia or Benzo[a]pyrene. In addition, the June 26-27, 2024 samples had some QA/QC issues, which are documented in the lab reports in Attachment 1 as well as in the data V&V worksheets in Attachment 2. If any data did not meet the appropriate QA/QC requirements, it was assigned an appropriate laboratory qualifier or validation code. A summary of validation codes is provided in the QAPP as well as in the lab reports in Attachment 1.

Once the V&V process was completed, the worksheets were signed. Copies of the V&V worksheets are provided with this memo (Attachment 2). In the database, data that was checked during the V&V process was then changed from being denoted with a "P" for provisional to a "V" for verified, and laboratory qualifiers were added, as needed.

CMC FY 2024 DRY SEASON ASSESSMENT AND EVALUATION OF MONITORING RESULTS

The EPA approved WSB MS4 CMC Monitoring Plan, May 5, 2016, has 33 parameters to monitor at the Rio Grande North and Rio Grande South monitoring locations. This does not include PFAS, which is a new parameter the CMC chose to add. Of these 33 parameters, 15 parameters were not detected in the FY 2024 dry season samples at either the Rio Grande North or South locations. Refer to Table 3 for a list of the parameters that were not detected.

Table 3: Parameters Not DetectedCMC FY 2024 Dry Season Monitoring

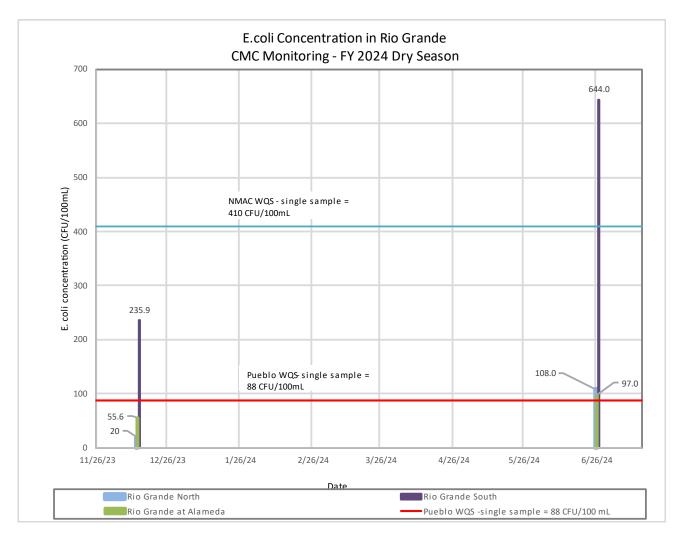
Parameters Not Detected				
Oil and Grease (N-Hexane Extractable Material)	Dissolved Lead			
Tetrahydrofuran	Dieldrin			
Benzo(b)fluoranthene (3, 4 Benzofluoranthene)	Pentachlorophenol			
Benzo(k)fluoranthene	Benzidine			
Chrysene	Benzo(a)anthracene			
Indeno (1,2,3-cd) Pyrene	Dibenzofuran			
Bis (2-ethyhexyl) Phthalate	Dibenzo(a,h)anthracene			
(other names: Di(2-ethylhexly)phthalate, DEHP)	Chromium VI (Hexavalent)			

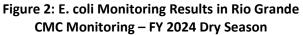
For the remaining parameters on the CMC monitoring parameter list, three (3) parameters (E. coli, PCBs, and Dissolved Copper) had exceedances of the applicable surface WQS found in New Mexico Administrative Code (NMAC) 20.6.4 and the Pueblo of Isleta WQS during the FY 2024 dry season. Additionally, two (2) samples were showing dissolved oxygen (DO) below WQSs. All exceedances are discussed below in further detail.

E. coli:

The E. coli results collected during the FY 2024 dry season are summarized in Table 4.

Table 4: E. coli Results CMC FY 2024 Dry Season Monitoring


Date – Rio Grande Location	E. coli Results MPN (CFU/100 mL)
December 13, 2023 – Rio Grande North, Isleta Dam	20
December 13, 2023 – Rio Grande at Alameda	55.6
December 14, 2023 – Rio Grande South, Isleta Dam	235.9
June 26, 2024 – Rio Grande North Angostura	108
June 26, 2024 – Rio Grande at Alameda	97
June 27, 2024 – Rio Grande South, Isleta Dam	644


At the Rio Grande North location (upstream of the Albuquerque UA, at the Angostura Diversion Dam), two (2) samples were collected and tested for E. coli. The lab results for the December 13, 2023 sample showed that the sample had an acceptable E. coli concentration, below the primary contact-single sample Pueblo of Isleta WQS (88 CFU/100 mL). The E. coli result on June 26, 2024 exceeded the primary contact-single sample Pueblo of Isleta WQS (88 CFU/100 mL).

At the Rio Grande South location (downstream of the MS4 UA), two (2) samples were collected and tested for E. coli. The December 14, 2023 sample exceeded the primary contact-single sample Pueblo of Isleta WQS (88 CFU/100 mL) but was below the primary contact-single sample NMAC WQS (410 CFU/100 mL). The June 27, 2024 sample exceeded both the primary contact-single sample Pueblo of Isleta WQS (88 CFU/100 mL) and the primary contact-single sample NMAC WQS (410 CFU/100 mL).

In addition, the CMC collected two (2) E. coli samples in the Rio Grande at Alameda Blvd. during the FY 2024 dry season. The Alameda Blvd. analysis point was based on discussions with NMED in February 2017 on collecting actual E. coli data at the stream segment divide verses using an area percentage (as defined in the TMDL) for E. coli loading calculations. The lab results showed that the sample had an acceptable E. coli concentration below the primary contact-single sample Pueblo of Isleta WQS (88 CFU/100 mL) and the primary contact-single sample NMAC WQS (410 CFU/100 mL) for the December 13, 2023 sample. But for the June 26, 2024 sample, the lab results showed that the sample slightly exceeded the primary contact-single sample Pueblo of Isleta WQS (88 CFU/100 mL) but was below the primary contact-single sample NMAC WQS (410 CFU/100 mL) but was below the primary contact-single sample NMAC WQS (88 CFU/100 mL) but was below the primary contact-single sample NMAC WQS (410 CFU/100 mL) but was below the primary contact-single sample NMAC WQS (410 CFU/100 mL) but was below the primary contact-single sample NMAC WQS (410 CFU/100 mL) but was below the primary contact-single sample NMAC WQS (410 CFU/100 mL).

As a reminder, in January 2017 the CMC members clarified with NMED that the units MPN/100 mL and CFU/100 mL are considered to be interchangeable for the purposes of this stormwater quality monitoring reporting. The New Mexico and Pueblo of Iselta WQSs for E. coli are currently in units of CFU/100 mL, while the lab reports are typically in units of MPN/100mL. The graph presented in this section uses units of CFU/100 mL to be consistent with the WQS units. Refer to Figure 2 for a graphical representation of E. coli results from December 2023 through June 2024.

PCBs:

There are multiple surface WQS values listed for PCBs in both the Pueblo of Isleta and the State of New Mexico standards for the various designated uses. The PCB results for samples collected from the Rio Grande during the FY 2024 dry season stormwater events were below the minimum quantification level (MQL) established in EPA standards for the MS4 NPDES Permit (Appendix F, 0.2 ug/L for PCBs). PCBs were not detected for the both the December 2023 and June 2024 Rio Grande North samples. However, both samples from the Rio Grande South location were above the Pueblo of Isleta human health criteria (based on fish consumption only) WQS for surface waters. The human health-organism only criterion is based upon human consumption of fish and other aquatic life that bioaccumulate contaminants over time. The PCB results from 2016 through 2024 are shown in Figure 3, relative to several of the WQSs for PCBs.

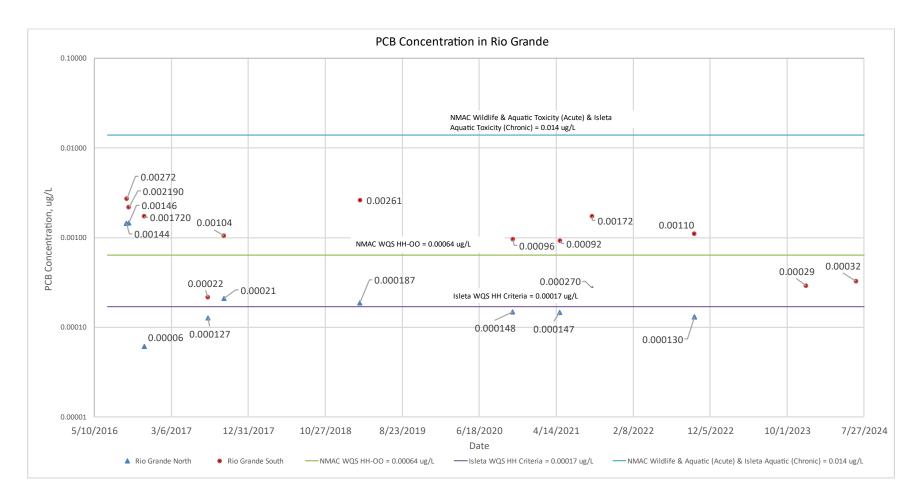


Figure 3: PCB Monitoring Results in Rio Grande CMC Monitoring – 2016 - 2024

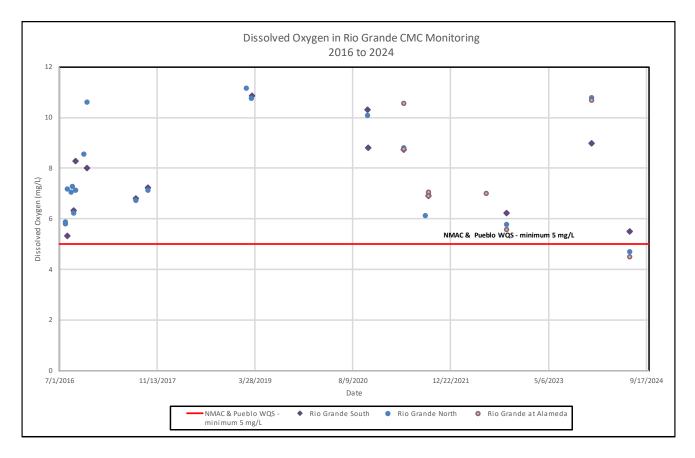
Gross Alpha, Adjusted:

The December 2023 and June 2024 samples did not exceed the New Mexico and Pueblo of Isleta WQSs for gross alpha, adjusted. The WQS for gross alpha, adjusted is the same value for both the NMAC 20.6.4 Water Quality Criterion and Pueblo of Isleta. The WQS of 15 pCi/L ("pCi/L" means picocuries per liter) is a general standard for the Pueblo of Isleta; for New Mexico it is based on Domestic Water Supply and Livestock Watering designated uses.

The last exceedance for gross alpha, adjusted for CMC sampling was reported for the October 6, 2022, Rio Grande South sample. The CMC will continue to closely evaluate this parameter in future samples. If additional exceedances occur, the CMC will discuss the results further and may consult NMED for further guidance.

Dissolved Copper:

The June 27, 2024 sample result of 10 ug/L for the Rio Grande South at Isleta Dam exceeded the New Mexico, Pueblo of Sandia, and Pueblo of Isleta WQS for dissolved copper. The acute WQS for dissolved copper is 8 ug/L for the NMAC 20.6.4 Water Quality Criterion, Pueblo of Sandia, and Pueblo of Isleta; the Aquatic life Acute value is based on hardness of 90 mg/L.


Most dissolved copper CMC results for the Rio Grande South at Isleta Dam have been <1 ug/L. The previous highest result was 1.5 ug/L for CMC sampling reported for September 2, 2021 for the Rio Grande South sample. The CMC will continue to closely evaluate this parameter in future samples. If additional exceedances occur, the CMC will discuss the results further and may consult NMED for further guidance.

Dissolved Oxygen (DO) and Temperature:

Two (2) of the water quality parameters are specifically worth mentioning in this memo because they are listed in the WSB MS4 Permit, Part I.C.1 – Special Conditions: dissolved oxygen (DO) and temperature. The temperature parameter did not have any surface water quality exceedances during the FY 2024 dry season sampling.

DO is a water quality concern in the Rio Grande if it is below 5 mg/L. The samples taken on June 26, 2024 at Rio Grande North and Rio Grande at Alameda had DO values below 5 mg/L. These values were not reported as exceedances because the reported field values were taken from a fifth composite sample when the previous four (4) other samples were above 5 mg/L. From the CMC Sampling data sheet of both the Rio Grande North and the Rio Grande at Alameda, the temperature of the sample increases within the hour of composite testing due to ambient air temperature, and the DO decreases due to the inverse relationship between the two parameters. The DO reported lower than 5 mg/L was not due to the stormwater runoff that occurred but due to the sampling protocol, which impacted the reported DO.

This provides the MS4s with specific monitoring data showing that stormwater did not cause or contribute to exceedances of applicable DO WQSs in the Rio Grande from any of the CMC samples from 2016 to 2024. Refer to Figure 4 for CMC DO results and comparison to applicable WQSs.

Figure 4: Dissolved Oxygen (DO) Monitoring Results in the Rio Grande CMC Monitoring – 2016 – 2024

Temperature is listed in the WSB MS4 Permit as a special condition (currently only applicable to the City of Albuquerque and AMAFCA). Past data submitted to EPA and NMED by the MS4 permittees have proven that stormwater discharges into the Rio Grande are not raising the Rio Grande temperature above the WQSs. The data collected during this FY 2024 dry season monitoring also supports this conclusion. All the temperature field readings taken in the Rio Grande during the CMC FY 2024 dry season were below 32.2°C (90°F), which is the WQS for the State of New Mexico and for the Isleta and Sandia Pueblos. Refer to Figure 5 for temperature results and comparison to applicable WQSs for all CMC samples taken upstream and downstream of the MRG MS4 area from 2016 to 2024.

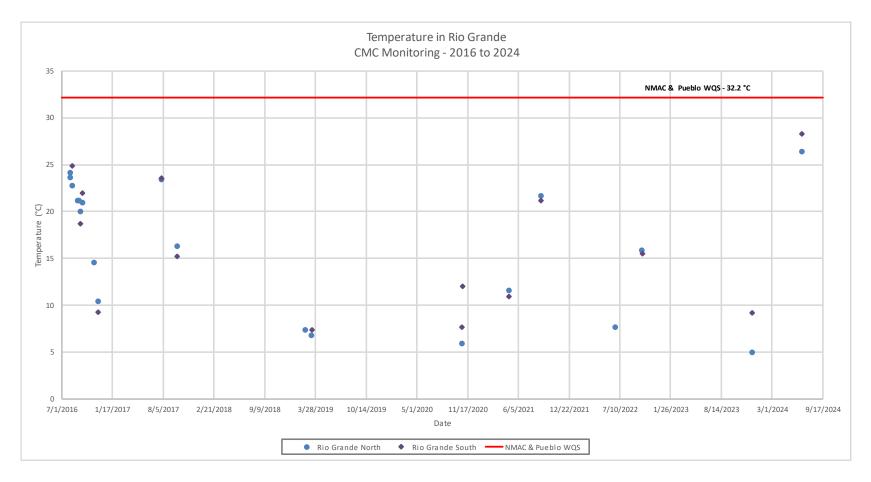
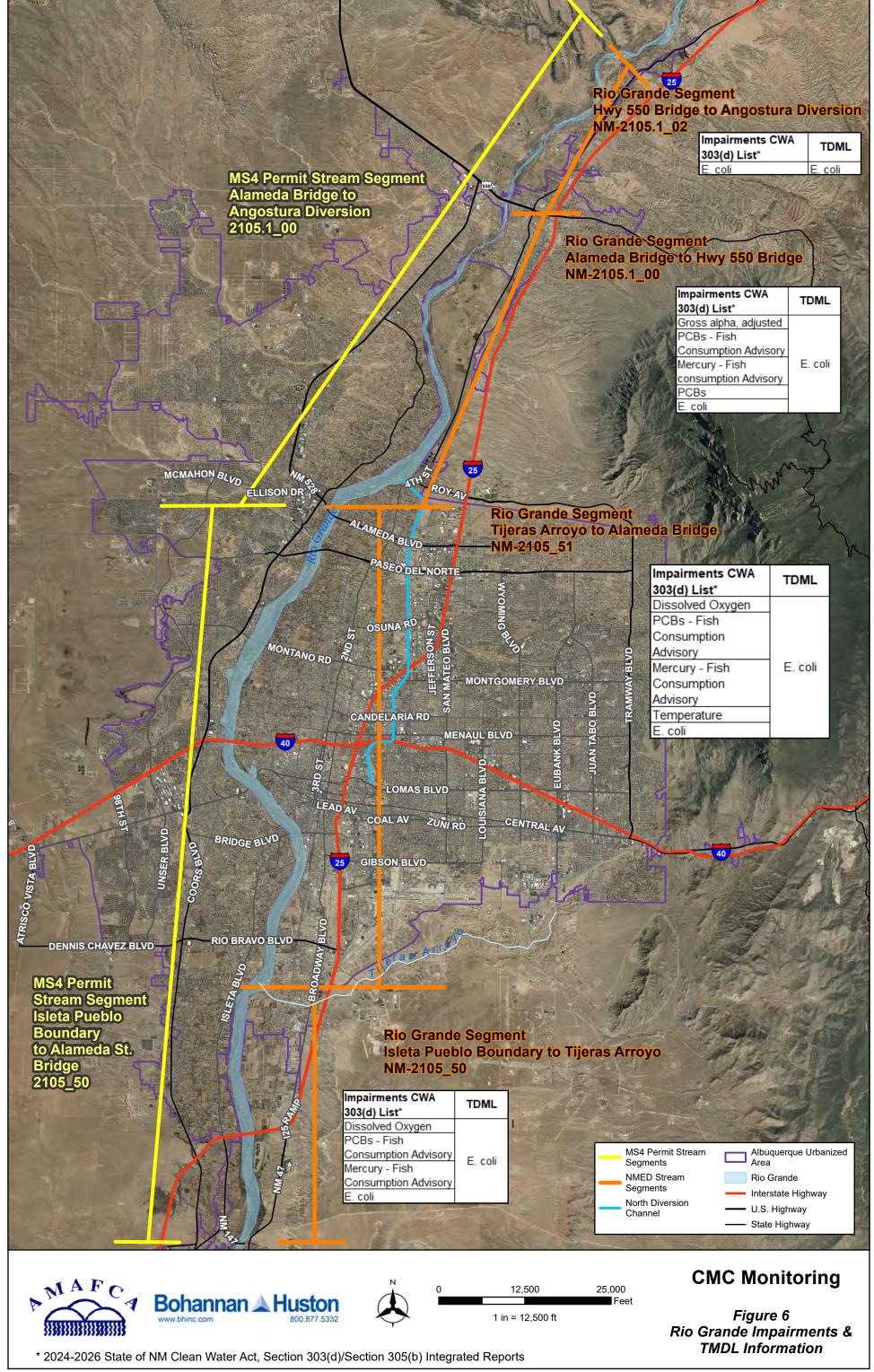


Figure 5: Temperature Monitoring Results in the Rio Grande CMC Monitoring – 2016 - 2024

CMC FY 2024 DRY SEASON E. COLI LOADING CALCULATIONS AND WASTE LOAD ALLOCATION (WLA)


Related to assessing the stormwater results, the E. coli loading was calculated and compared to the aggregate Total Maximum Daily Load (TMDL) Waste Load Allocation (WLA) for the CMC group. A TMDL is the maximum amount of a pollutant (E. coli in this case) that a water body (Rio Grande) can assimilate on a daily basis without violating applicable surface WQSs. The total TMDL for a stream segment consists of the multiple WLAs for point sources, non-point sources, and natural sources, plus a margin of safety. The CMC MS4 allotted WLA was determined in the EPA Approved, *Total Maximum Daily Load for the Middle Rio Grande Watershed*, June 30, 2010, and subsequent communications with NMED. The WLA varies by flow condition in the Rio Grande and by stream segment.

E. coli loading calculations and comparison to the WLA follows the WSB MS4 Permit requirements in *Discharges to Water Quality Impaired Water Bodies with an Approved TMDL, Part I.C.2.b.(i).(c).B, Appendix B-Total Maximum Daily Loads* (TMDLs) Tables of the WSB MS4 Permit, and the NMED guidance provided to the CMC. Attached to this memo is the WLA Calculation spreadsheet, which steps through the E. coli loading calculations and assumptions comparing the calculated E. coli loading to the CMC aggregate WLA defined by NMED.

There are two (2) stream segments defined in the WSB MS4 Permit (Appendix B): Isleta Pueblo Boundary to Alameda Street Bridge (Stream Segment 2105_50) and Non-Pueblo Alameda Bridge to Angostura Diversion (Stream Segment 2105.1_00). These stream segments differ from NMED's current stream segments defined in the 2022-2024 State of New Mexico Clean Water Act Section 303(d)/Section 305(b) Integrated Report (NMED, April 2022) and Draft 2024-2026 State of New Mexico Clean Water Act Section 303(d)/Section 305(b) Integrated Report (NMED, December 2023). NMED currently has four (4) stream segments instead of the two (2) WSB MS4 stream segments. These various stream segment designations are shown in Figure 6, page 17.

The *NMED 303(d)/305(b) 2022-2024* and *Draft 2024-2026 Integrated Report* tables show the most recent assessment results, and currently all segments of the Rio Grande (Isleta to Angostura Diversion) are impaired for E. coli and have a TMDL for E. coli.

The E. coli daily loading associated with the CMC group and comparison to the NMED WLA was completed for the two (2) qualifying dry season storm events – December 13-14, 2023 and June 26-27, 2024. For these events, the CMC obtained an E. coli sample in the Rio Grande at Alameda and used this to calculate the E. coli loading for the two (2) river segments. Refer to Table 5 on page 18 for a summary of the WLA comparison results. A spreadsheet is attached to this memo that provides the detailed WLA calculations.

P:\20240355\GIS\Projects\20240355_CMCMonitoring_Figures\20240355_CMCMonitoring_Figures.aprx Author: mcrooks

September 2024

Table 5: Summary of CMC E. Coli Loading Compared to WLA

Date / Stream Segment	Daily Mean Flow (cfs)	Flow Conditions (cfs) range defined by NMED	CMC Daily E. coli Loading (CFU/day)	NMED WLA for CMC for Stream Segment and Flow Conditions	Loading Compared to WLA Potential Exceedance or Acceptable
December 13-14, 2023 – Rio Grande North E. coli Concentration 12/13/2023 = 19.7 MPN (CFU/100 mL) Rio Grande at Alameda E. coli Concentration 12/13/2023 = 55.6 MPN (CFU/100 mL) Rio Grande South E. coli Concentration 12/14/2023 = 235.9 MPN (CFU/100 mL)					
Alameda to Angostura	2,250	Moist	1.17E+11	9.09E+10	WLA Potential Exceedance
Isleta to Alameda	2,210	Moist	5.70E+11	6.29E+10	WLA Potential Exceedance
June 26-27, 2024 – Rio Grande North E. coli Concentration 6/26/2024 = 108 MPN (CFU/100 mL) Rio Grande at Alameda E. coli Concentration 6/26/2024 = 97 MPN (CFU/100 mL) Rio Grande South E. coli Concentration 6/27/2024 = 644 MPN (CFU/100 mL)					
Alameda to Angostura	486	Dry	1.17E+11	3.24E+10	WLA Acceptable
Isleta to Alameda	476	Dry	5.70E+11	1.57E+10	WLA Potential Exceedance

As Table 5 illustrates, the calculated E. coli loading for the December 13-14, 2023 storm event for the northern segment (Alameda to Angostura) and the southern segment (Isleta to Alameda) of the Rio Grande were above the WLA for the CMC MS4s. This analysis used the mid-point E. coli sample result obtained in the Rio Grande at Alameda. For June 26-27, 2024, the calculated E. coli loading for the storm event for the northern segment (Alameda to Angostura) was an acceptable WLA for the CMC MS4s. The southern segment (Isleta to Alameda) of the Rio Grande was above the WLA for the CMC MS4s. The analysis used the mid-point E. coli sample result obtained in the Rio Grande to Alameda) of the Rio Grande was above the WLA for the CMC MS4s. The southern segment (Isleta to Alameda) of the Rio Grande was above the WLA for the CMC MS4s. This analysis used the mid-point E. coli sample result obtained in the Rio Grande at Alameda.

The WSB MS4 Permit implies that the WLA is a measurable goal for the MS4s related to E. coli. Based on extensive review of the EPA Approved, *Total Maximum Daily Load (TMDL) for the Middle Rio Grande Watershed*, June 30, 2010, this seems to be an unattainable goal for MS4s.

Page 40 of the 2010 TMDL Report states, "It is important to remember that the TMDL is a planning tool to be used to achieve water quality standards...Meeting the calculated TMDL may be a difficult objective." The TMDL/WLA was calculated by NMED to meet the Pueblo (Sandia and Isleta) geometric mean maximum of 47 CFU/100 ml, which was done to be "protective of downstream waters" and "to provide an implicit margin of safety (MOS)". A single grab sample E. coli result meeting this very low geometric means WQSs will be very difficult for the MS4s to obtain.

The CMC members discussed the difficulty of using the WLA as a measurable goal with NMED on February 1, 2017. NMED explained that exceeding the WLA does not trigger enforcement. However, NMED strongly encouraged the MS4s to document what they are doing once they realize the WLA is potentially exceeded. The meeting on February 1, 2017, and the CMC discussion with NMED on February 16, 2017, demonstrate CMC members are working toward understanding the WLA. In addition, the CMC members began implementing a refinement to the sampling plan discussed with NMED by obtaining an E. coli sample in the Rio Grande at Alameda effective the FY 2018 wet season, as feasible. This demonstrates that the CMC is continuing to investigate the potential exceedances and make improvements to monitor E. coli in the Rio Grande.

DATA ENTRY FOR DISCHARGE MONITORING REPORTS

The WSB MS4 Permit entered Administrative Continuance in December 2019, when EPA Region 6 did not issue a new MS4 Permit before the current MS4 Permit's expiration date. Until a new MS4 Permit is issued, there are no compliance monitoring requirements for the CMC in the Rio Grande. As identified in the WSB MS4 CMC Monitoring Plan, the WSB MS4 Permit required a minimum of seven (7) storm events be sampled at both the Rio Grande North and Rio Grande South locations. All MS4 Permit required samples have been obtained by the CMC and verified stormwater quality data from these required events have been submitted to the EPA using electronic Discharge Monitoring Report (DMR) forms. Data from the DMRs are uploaded to a comprehensive nationwide database that contains discharge data for facilities and other point sources that discharge directly to receiving streams. For this task, BHI has not completed any data entry related to the EPA DMRs for the FY 2024 dry season.

CONCLUSIONS AND PLANNING

During the FY 2024 dry season (Nov. 1, 2023 to June 30, 2024), two (2) qualifying stormwater samples were obtained by the CMC. Lab results were received, and this data has been entered into the CMC Excel database. The lab data entered is marked in the spreadsheet as "V" (verified), and data V&V has been completed (refer to Attachment 2).

To summarize, monitoring results and E. coli loading calculations for the FY 2024 dry season show that:

- The WSB MS4 Permit entered Administrative Continuance in December 2019, when EPA Region 6 did not issue a new MS4 Permit before the current MS4 Permit's expiration date. Until a new MS4 Permit is issued, there are no compliance monitoring requirements for the CMC in the Rio Grande. All MS4 Permit required samples have been obtained by the CMC, as well several samples collected during Administrative Continuance, including the two (2) samples obtained in the FY 2024 dry season, as reported in this memo.
- For the FY 2024 dry season, 15 parameters were not detected in the FY 2024 dry season samples at either the Rio Grande North or South locations for both the December 2023 and June 2024 stormwater samples.
- > A few key parameters met the applicable WQSs, as they have for all the CMC samples to date:
 - All temperature results were less than 32.2°C (maximum WQS).
 - All gross alpha, adjusted results were less than 15 pCi/L (maximum WQS).

CMC Dry Season, Wet Weather Stormwater Monitoring FY 2024 Dry Season (Nov. 1, 2023 to June 30, 2024) 9/6/2024 Page 20

- The PCB results were below the New Mexico Surface WQSs and Pueblo of Isleta Surface WQSs for designated uses, including drinking water, wildlife habitat, acute aquatic life, and chronic aquatic life. However, the Rio Grande South CMC samples from December 14, 2023 and June 27, 2024, were above the Pueblo of Isleta human health criteria (based on fish consumption only) WQS for surface waters.
- The calculated E. coli loading for the December 13-14, 2023 storm event for the northern segment (Alameda to Angostura) and the southern segment (Isleta to Alameda) of the Rio Grande was above the WLA for the CMC MS4s. This analysis used the mid-point E. coli sample result obtained in the Rio Grande at Alameda.
 - Sources for the E. coli loading measured in the river are not solely attributable to the CMC MS4 members; the E. coli loading calculations serve to provide a reasonable estimate of the CMC contribution to the measured E. coli loading.
- The calculated E. coli loading for the June 26-27, 2024 storm event for the north segment (Alameda to Angostura) was acceptable for the WLA for the CMC MS4s. The southern segment (Isleta to Alameda) of the Rio Grande was above the WLA for the CMC MS4s. This analysis used the mid-point E. coli sample result obtained in the Rio Grande at Alameda.
 - Sources for the E. coli loading measured in the river are not solely attributable to the CMC MS4 members; the E. coli loading calculations serve to provide a reasonable estimate of the CMC contribution to the measured E. coli loading.

These two (2) samples were the only CMC samples obtained in FY 2024. A wet season sample (July 1, 2023 – Oct. 31, 2023) was not obtained by the CMC. Therefore, this is the only reporting memo for CMC members for FY 2024.

SG/ab

Attachments:

Attachment 1 – DBS&A Field Data & Eurofins Environment Testing Environmental Analysis Laboratory Reports with BHI Notes for FY 2024 Dry Season Attachment 2 – FY 2024 Dry Season Completed Data Verification and Validation (V&V) Forms

Spreadsheets Included Separately:

E. coli Loading and Comparison to Waste Load Allocation (WLA) Excel Spreadsheet

Excel CMC Spreadsheet with FY 2024 Dry Season Stormwater Quality Monitoring Results

ATTACHMENT 1

DBS&A FIELD DATA & EUROFINS ENVIRONMENT TESTING LABORATORY REPORTS WITH BHI NOTES FOR FY 2024 DRY SEASON CMC Water Quality Results Database FY 2017 -FY 2024 Date: July 4, 2024 Summary of Lab Results for CMC samples

Summary of Lab Results for CMC samples	1																								
Parameter	Permit Required	Provisional or	2024 CMC SAMPLE NORTH Collection Date 12/13/2023 Dry Season Sample	Qualifier Check con Quali	npared to Water ity Criterion	Provisional or	2024 CMC SAMPL NORTH Collection Date 6/26/2024 Dry Season Sample	E Qualifier	Check compared to Water Quality Criterion	Provisional or Verified	2023 CMC SAMPLE SOUTH Collection Date 12/14/2023 Dry Season Sample	Qualifier	Check compared to Water Quality Criterion	Provisional or Verified	2024 CMC SAMPLE SOUTH Collection Date 6/27/2024 Dry Season Sample	Qualifier	Check compared to Water Quality Criterion		2024 CMC SAMPLE - EXTRA ALAMEDA Collection Date 12/13/23 Dry Season Sample	Qualifier	Check compared to Water Quality Criterion	Provisional or Verified	2024 CMC SAMPLE - EXTRA ALAMEDA Collection Date 6/26/24 Dry Season Sample	Qualifier	Check compared to Water Quality Criterion
Total Suspended Solids (TSS)	Units mg/L	Verified V	6			Verified V	58			v	22			v	160		-	Provisional or Verified				Verified			
Total Suspended Solids (TDS)	mg/L	v	204		ОК	v	250		ок	v	226		ок	v	280		ок								
																									
Chemical Oxygen Demand (COD) Biochemical Oxygen Demand (BOD;)	mg/L mg/L	v v	110 <2.0	н	-	v	ND 2	*-b	-	v v	ND <2.0		-	v	ND ND	*-b	-								
		-				-		Refer to												10000000				Refer to	
Dissolved Oxygen (DO)	mg/L	v	10.8		ОК	v	4.7	comment in previous column	<wq standard<="" td=""><td>v</td><td>9</td><td></td><td>ОК</td><td>v</td><td>5.5</td><td></td><td>ОК</td><td>v</td><td>10.7</td><td></td><td>OK</td><td>v</td><td>4.5</td><td>comment in previous column</td><td><wq standard<="" td=""></wq></td></wq>	v	9		ОК	v	5.5		ОК	v	10.7		OK	v	4.5	comment in previous column	<wq standard<="" td=""></wq>
Oil and Grease (N-Hexane Extractable Material)	mg/L	v	ND		ОК	v	ND		ОК	v	ND		ок	v	ND		ОК								
E. coli	MPN (CFU/100 mL)	v	19.7		ок	v	108.0		>WQ Standard	v	235.9		>WQ Standard	v	644.0		>WQ Standard	v	55.6		ОК	v	97.0		>WQ Standard
рн	s.u.	v	8.15		ок	v	8.41		ок	v	8.24		ОК	v	8.3		ОК	v	7.73		ОК	v	8.4		ок
Total Kjedahl Nitrogen (TKN)	mg/L	v	ND		-	v	0.6		-	v	ND		-	v	0.99		-								
Nitrate plus Nitrite	mg/L	v	ND	DF 5	ОК	v	0.14		ОК	v	0.32	J	ОК	v	0.62		ОК								
Dissolved Phosphorous	mg/L	v	ND			V	0.055			v	0.065		-	v	0.37		-								
Ammonia (mg/L as N)	mg/L	v	1.1	dı	ОК	v		Not reported in lab report	N/A	v	0.84	aı	ок	v		Not reported in lab report	ОК								
Total Nitrogen	mg/L	v	ND	D	ОК	v	0.74		ОК	v	ND	D	ОК	v	1.61		ОК								
Total Phosphorous	mg/L	v	ND			v	0.13		-	v	0.14		-	v	0.38		-								
PCBS - 0.000064 (Method 1668A - sum of all congeners)	μg/L	v	ND		ок	v	ND		ОК	v	0.0002908	þl	>WQ Standard	v	0.000323	p L	>WQ Standard								
Gross Alpha, Adjusted	pGi/L	v	2.25 ± 1.72		ОК	v	5.25		ОК	v	0.945 ± 1.43		ок	v	3.77	U	ок								
Tetrahydrofuran	µg/L	v	ND		-	v	ND	н	-	v	ND		-	v	ND	н	-								
Benzo[a]pyrene	μg/L	v	ND		ОК	v		Not reported in lab report	N/A	v	ND		ОК	v		Not reported in lab report	ОК								
Benzo[b]fluoranthene (other name: 3,4-Benzofluoranthene)	μg/L	v	ND		ОК	v	ND	*+	ОК	v	ND		ОК	v	ND	*+	ОК								
Benzo(k)fluoranthene	μg/L	v	ND		ОК	v	ND	*+	ОК	v	ND		ОК	v	ND	*+	ОК								
Chrysene	μg/L	v	ND		ОК	v	ND	*+	ОК	v	ND		ОК	v	ND	*+	ОК								
Indeno(1,2,3-cd)Pyrene	μg/L	v	ND		ОК	v	ND		OK	v	ND		ОК	v	ND		ОК								
Dieldrin	μg/L	v	ND		ОК	v	ND	*+, H	ОК	v	ND		ОК	v	ND	*+, H	ОК								
Pentachlorophenol	μg/L	v	ND		ок	v	ND		ОК	v	ND		ОК	v	ND		ОК								
Benzidine	μg/L	v	ND		ОК	v	ND		ОК	v	ND		ОК	v	ND		ОК								
Benzo(a)anthracene	μg/L	v	ND		ОК	v	ND	*+	ОК	v	ND		ОК	v	ND	*+	ОК								
Dibenzofuran	μg/L	v	ND			v	ND			v	ND			v	ND		-								
Dibenzo(a,h)anthracene	μg/L	v	ND		ОК	v	ND		ОК	v	ND		ОК	v	ND		ОК								
Chromium VI (Hexavalent)	μg/L	v	ND		ОК	v	ND		ОК	v	ND		ОК	v	ND		ОК								
Dissolved Copper	μg/L	v	0.55		ОК	v	0.95		ок	v	0.75		ок	v	10		>WQ Standard								
Dissolved Lead	μg/L	v	ND		ОК	v	ND		ОК	v	ND		ок	v	ND		ОК								
Bis (2-ethyhexyl) Phthalate (other names: Di(2- ethylhexly)phthalate, DEHP) - 2.2	μg/L	v	ND		ОК	v	ND	*.	ОК	v	ND		ОК	v	ND	۰.	ок								
ethylhexly)phthalate, DEHP) - 2.2 Conductivity	umhos/cm	v	305			v	254.1	1	-	v	338		-	v	337		-	v	310	1		v	272.1		-
Temperature	°C	v	5		ОК	v	26.4		ОК	v	9.2		ОК	v	28.3		ОК	v	7.1		ОК	v	28.9		ОК
Hardness (as CaCO ₂)	mg/L	v	120			v	110			v	130			v	140		-								
Mercury PFA (6)	μg/l ppt (ng/L)					Р	3.1	J	ОК					р	4.1	л	OK								
PFA (6) (filtered)	ppt (ng/L)					Ρ			ОК																

Data Verification/Validation and Qualifier Notes: (R) The sample results are unusable because certain criteria were not met. The analyte may or may not be present in the sample. (I) Sample holding time exceeded. (J) The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample. (D) Sample was disided by Lad used to matrix (U) Analyte was analyzed for, but not detected above the specified detection limit.

Notes:
1. Vet Season monitoring period - July 1 to October 31 and Dry Sesson monitoring period - November 1 to June 30 according to the Watershed Based MS4 Permit NMRD4A000.
2. VMater Calabity Criterion from 20.6.4 MMAC, Bio Grande Basin - section 20.6.4 J.05. For a mean monthly flow of 150.04, monthly average concentration for 175 J.500 mg/l or A section 20.6.4 MMAC, Bio Grande Basin - section 20.6.4 J.05. For a mean monthly flow of 150.04, 20.6.4 Section 20.6.4 J.05. For a mean monthly flow of 150.04, 20.6.4 monthly average concentration for 175 J.500 mg/l or A section 20.6.4 MMAC, Bio Grande Basin - section 20.6.4 J.05. For a mean monthly flow of 150.04, 20.6.4 Section 20.6.4 Section

ND - analyte not detected above the laboratory method detection limit NA - not analyzed Hatching also indicates that parameter was not analyzed

National recommended WQ criteria Human Health https://www.epa.gov/wqc/national-recommended-water-quality-criteria-human-health-criteria-table

Site Identification: RG-North	
Notes: 151 PA 1020 St 21C162804	
Oakton CTSI	
Full Suite Sample Date and Time: 12 - 13 - 23 200	
Full Sample Identification: R6North - 20231213	
QC Samples: Duplicate / None QC Sample ID:	
QC samples require a DIFFERENT sample time than the environmental sample. QC Sample time:	

Full Suite Collection Point :	Ango	STURA	Divers	ion	works		
Full Suite Sample Volume:	8 gal	Collection	Time Start:	1115	End:	1200	

Field Parameters for each 2-gallon grab

Grab	Time	Temp (°C)	рН	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (%)		
1	1115	٦.3	6.56	337	10.5	102		
2	1130	5.0	7.79	302	10.8	99		
3	1145	5.7	8.64	304	10.1	95		
4	1200	5. [8.11	313	10.5	98		
Composite	1203	5.Ø	8.15	305	10.8	99		
□Turbid Water CColor <u>Clear</u> → □Solids □Oil/Sheen □Foam □Odor <u>NO</u>								

Analytical - see 2021 COC table

Site Photo Sample Photo

Site Identification: RG-South	
Notes: VSI Pro 1020 S# 21C102804	1.112 - D.122
OAKTON CTSI	
Full Suite Sample Date and Time: 12/14/23 1445	
Full Sample Identification: RG South- 2023 1214	
QC Samples: Duplicate / None QC Sample ID:	
QC samples require a DIFFERENT sample time than the environmental sample. QC Sample time:	

Full Suite Collection Point :	Isleta	- dam			
Full Suite Sample Volume:	Baal	Collection Time Start:	1408	End:	1445

Field Parameters for each 2-gallon grab

Grab	Time	Temp (°C)	pН	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (%)
1	1400	11.7	7.81	332	7.2	78
2	1415	9.7	8.15	329	8.2	85
3	1430	9.8	8.23	330	9.2	9.6
4	1445	9.3	8.31	332	8.2	85
Composite	1450	9.2	8.24	338	9.0	92
ØTurbid Wa	ater	r Brown	K Solid	s 🛛 Oil/Sheen	□Foam □Odor_	NOME

Analytical - see 2021 COC table

Site Photo

Samplers C. Johanneson, J. Aller

CMC Sampling Data Sheet

Site Ider	ntification:	Riol	Grande	e Alameda
Notes:	YSI	Pro 1	020	S# 210102804
	Oc	Kton	CTS	
Full Su	ite Sampl	e Date and Ti	ime:	12 13 14 1325
Full Sa	mple Iden	tification:	RGA	-lameda-20231213
QC San	nples:	Duplicate / N	one	QC Sample ID:
	nples requinple time:	ire a DIFFERE	ENT sampl	ole time than the environmental sample.

Full Suite Collection Point :	Pe des	strian	Bridge			
Full Suite Sample Volume:	IL	Collec	tion Time Start:	1325	End:	

Field Parameters for each 2-gallon grab

Grab	Time	Temp (°C)	рН	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (%)
1						
2	*					
3						
4						
Composite	1325	7.1	7.73	31ø	10.7	97
Turbid Wa	ater ØColo	r Clear	ASolids	⊡Oil/Sheen	□Foam □Odor	

Analytical - see 2021 COC table

Site Photo Sample Photo

Chain-of-Custody Record Client: Durie & Stephens AMAFCA Mailing Address: 6020 Acodemy	Turn-Around Time: Standard Rush Project Name: CMC Project #:	HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109											
Phone #:	Dry SDASOM FYZY	Tel. 505-345-3975 Fax 505-345-4107 Analysis Request											
Phone #: email or Fax#: pcha Yis @ Amailan.org QA/QC Package: □ Standard □ Level 4 (Full Validation)		TMB's (8021) / DRO / MRO) 8082 PCB's 4.1) 											
Accreditation: Az Compliance NELAC COther EDD (Type)	Sampler: DB5A - C. Johannised On Ice: PYes DNo # of Coolers: 1 Jong: Cooler Temp(Including CF): ST + 1(1-5.8 (°C))	MTBE / 5D(GRO sticides/f 8310 or 8310 or Metals 7, NO ₃ , 7, NO ₃ , 7, NO ₃ ,											
Date-Time Matrix Sample Name	Container Preservative HEAL No. Type and # Type	BTEX / MTI TPH:8015D(TPH:8015D(8081 Pestic 8081 Pestic BTEX / MTI PAHS by 83 RCRA 8 Me CI, F, Br, N 8260 (VOA) 8270 (Semi- Total Colifor Ecol.											
12-13-23 1200 AQ RONOH-2023121													
12-13-1325 AQ RGALAmeda-20231	213 1												
	1												
Date: Time: Relinquished by 12-13 13 10 Date: Time: Relinquished by:	Received by: Via: Date Time Received by: Via: Date Time	Remarks:											

2

2

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report. 10-

÷.

C	Chain-of-Custody Record		ustody Record	Turn-Around	Time:	·····															
Client:		1.5	ar s ^a	DX Standard	l □ Rush					1.177.27								CTROPPEND	1000 M	OR	
				Project Nam			1 -								ment						
Mailing	Address	s:		CMC	- FYZ	4 Dry		10	าาบ									7109			
			and the second	Project #:		<u> </u>	1)5-34				2			-410				
Phone	#:							16	1. 00	/0-04	-0-08				Req			,			
		pcho	avez Camatia org	Project Manager:				ô					SO4			nt)		+			Т
	Package:		□ Level 4 (Full Validation)	Patrick Chaurz				O / MR	PCB's		8270SIMS		PO4,			nt/Abse	- en umert of	1 12		4.3	2
	itation:	🗆 Az Co	ompliance	Sampler: DBSA-C. Johanneson				/DR	082	.	827		NO_{2} ,			esei	Were a	2 2			
-	NELAC [#] Other EDD (Type)			On Ice:	Yes	□ No	E / TMB's (8021)	ß	es/8	504	5	sla	3, 1		(AO	ר) (Pr	20	Ŧ			
) (Type) _	1		# of Coolers		e Remarks(°C)	MTBE	D)D	sticid	thod	831	8 Metals	Br, NO ₃ ,	(A	im	iform	5	a±,			
			Comula Nama	Container	Preservative	HEAL No.	BTEX / N	TPH:8015D(GRO / DRO / MRO)	808/1 Pesticides/8082	EDB (Method 504.1)	PAHs by 8310	RCRA 81	CI, F, Br,	8260 (VOA)	8270 (Semi-VOA)	Total Coliform (Present/Absent)	e lo li	500			
	Time 3		Sample Name	Type and #	Туре	terre de la constante de la cons	8	F	8	ш	0	2	0	80	80	F		X	** • 0	14.	+
100 State	Course manager	1	RG North-2023123	1		· · ·			_		-						\checkmark	$\overline{\mathbf{x}}$		+	
12-14-22	1444	TITL	R6South -2023121	Ψ	-					_	-	_	_				\square	\cap	·	+	
		12/19/	17				-				\rightarrow	-						\vdash	\rightarrow	+	+
											-								4	-+-	+
									_			_							-+	+	+
			1			- <u> </u>					-								-+		_
<u>.</u>											_	_							\rightarrow	\rightarrow	-
							<u> </u>											$ \vdash $	\rightarrow	-+	
					<u> </u>				_	_	_	_			_				\rightarrow	+	+
				-		بر													\rightarrow	+	+
																				+	+
Date:	Time:	Relinquish	hed by:	Received by:	Via:C;20	Date Time	Ren	narks	<u>.</u>												
12 - 109	12.44	1	1		- 10-			8-		3.8	۰.										
Date:	Time:	Relinquish		Received by:	Via:	Date Time	7.	7.7:0.7.7.													
						marty															

1 12

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

EB Samplers ____

Site Identification:

RG North on sife 1325

Notes:

Full Suite Sample Date and Time:		1505	6/26/24
Full Sample Ide	ntification:	RG, NORTH 20	2425 20240626
QC Samples:	Duplicate / None	QC Sample ID:	,
QC samples req QC Sample time		ample time than the environ	nmental sample.

 Full Suite Collection Point :
 MPGC 0
 Dam Stack Structure

 Full Suite Sample Volume:
 Collection Time Start:
 End:

Field Parameters for each 2-gallon grab

Time	Temp (°C)	рН	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (%)
1400	24.5	8.06	238.5	5.le	82
1415	24-1	8.30	253.9	53.9 5.4	
1430	24.3 8.29 254.7		254.7	5.7	81
1445	24.5	8.74	<i>753.6</i>	5.1	74
1505	He.4	8-41	254-1	4-7	71
	140 9 1415 1430 1445 1505	Time (°C) 1409 24.5 1415 24.5 1430 24.5 1430 24.5 1445 24.5 1445 24.5	Time (°С) рн 140Ф 24.5 8.06 1415 24.5 8.30 1430 24.5 8.39 1430 24.5 8.26 1430 24.5 8.26	TimeTemp (°C)рнConductance (µS/cm)140024.58.00238.5141524.58.30253.9143024.58.39253.9143024.58.24254.7144524.58.24253.6150524.48.41254.1	TimeTemp (°C)pHConductance Conductance (μ S/cm)Oxygen (mg/L)140024.58.06238.55.6141524.18.30258.95.4143024.38.19254.75.7144524.58.26253.65.1150526.48.41254.14.7

Turbid Water Color yellowish Solids Oil/Sheen Foam g

Biological

Analytical - see 2021 COC table

Site Photo Sample Photo

Samplers T/EB

ition: RG at Alaneda ON STFE @ 1618 Site Identification: Notes:

an Suite Sam	ple Date and Time:	6/26/	24 /	628
Full Sample Ide	entification: R	Gæ	Alamoda	20240626
QC Samples:	Duplicate / None	QC Sample ID:		
QC samples req QC Sample time	uire a DIFFERENT san	nple time than the	environmental sar	nple.

Full Suite Collection Point :

Full Suite Sample Volume:

Collection Time Start

End:

Field Parameters for each 2-gallon grab

Grab	Time	Temp (°C)	pН	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (%)
1						
2						
3						
4						
Composite	1628	28.9	8,40	272-1	4.5	70
Turbid Wa	ater ZColo	hHz clou	□Solid	s 🗆 Oil/Sheen	DFoam ØÖdor	logical don
	54	htyclou	day		Biol	ogical
Analytical -	see 2021 CC	C table	v		Ċ	don
		C	Site Pho	to Sample Phot		
		/		/		

Samplers Tomes

Site Identific	ation:	G Sou	u th			
Notes:	Weat	ter M	05th	Service 8	3°F	
			0	0		
Full Suite S	Sample Date	and Time:	6	127124	1310	
Full Sampl	e Identificati	on: RC	5 SOM	127/24 14 2027	0627	
QC Sample	s: Duplic	ate / None	QC S	ample ID:	all	
QC sample QC Sample	s require a Di time:	FFERENT sa	ample time	than the environme	ental sample.	
Full Suite (Collection Po	oint :				
Full Suite S	ample Volum	e:	c	Collection Time Start	12:00 End	12:45
Field Paran	neters for ea	ch 2-gallon	grab			
Grab	Time	Temp	54	Specific Conductance	Dissolved Oxygen	Dissolved Oxygen

Grab	Temp Cond		Conductance (µS/cm)	Oxygen (mg/L)	Oxygen (%)	
1	1200	24.4	7.47	329.3	5.4	79
2	12-15	He-9	8.24	337.4	5.4	80
3	1230	27.0	8.26	336.8	5,2	77
4	12-45 27.4 8.28 334.9		4.7	70		
Composite	1310	28.3	8.30	337.D	5.5	83
Turbid Wa	ater PColo	Brown	St fsolid:	s ⊡Oil/Sheen I L	□Foam ☐Odor	Biological
Analytical -	see 2021 CC	DC table	500	yds		odor

Site Photo Sample Photo

	21010005 ate/Tim	· 6/24/24 / 1334	Technician: I Towes ampling & Bustion	
Reason for	Calibration:	RG NORTH S.	ampling & Bustion	
Battery Volt	age:	(6920 & 600 XLM only)		
Specific Co Standard U	onductance: lsed (mS)	Calibration Values Initial Post Cal. Cell Con	stant:* (Range: 5 +/- 0.5)	
pH 7 Buffer: 4 Buffer: 10 Buffer: Note: Spa	(first) (second) (third) n between pH 7 and pH	4.32 4.0 164-2	_(Range: 0 mV +/- 50) ∠(Range: +177 from pH 7) _(Range: -177 from pH 7) aproxīmately 165 to 180 mV.	
DO % Sat.	Membrane Changed		ast 15 mins before calibration. hrs before calibration / use.	
	631.4	Calibration Values % Initial Post Cal. DO Gair	* (Range: 1 (0.7 to 1.5))	
TurbidIty	Wiper Changed? Y/I	Wiper parks ~180 de	grees from optic port? Y/N	
	Standards Value	s (NTUs) (Always First)	Calibration Values InItial Post Cal.	-
Note: Use	longer probe guard wi	– h bjack turb probe; shorter guard v	with grey probe.	
with a nigh	ndset (650MDS). Wail value and descend to I	ost Calibration DO Sensor Outp 1 minute, turn handset on and ent he calibration value in 1 to 2 minut ings as they may be affected by th Reject?	er "Run". DO % Sat. must start es. If it does not reject	
		Calibration Comments		

1

ί.,

Sonde ID:	2/BIOWSBOate/Tim	a: 6/27/24 1109	Technician: IT/JC
Reason for	Calibration:	RG Samplin	hy
Battery Vol	lage:	(6920 & 600 XLM only)	0
Specific C Standard L	onductance: Jsed (mS)	Calibration Values Initial Post Cal. Cell C 	Constant;• (Range: 5 +/- 0.5)
pH 7 Buffer: 4 Buffer: 10 Buffer: Note: Spa	(first) (second) (third) n between pH 7 and pH	7.00 7.00 1.	/ 7(Range: 0 mV +/- 50) 7(Range: +177 from pH 7) (Range: -177 from pH 7) be aproximately 165 to 180 mV.
D0 % Sat.	Membrane Changed		t least 15 mins before calibration. o 8 hrs before calibration / use.
	DO Charge	(Range: 50 +/- 25)	10 I.
6	mm Hg He. Q	Calibration Values % Initial Post Cal. DO Ga \$3.8 96 1	ain* (Range: 1 (0.7 to 1.5))
Turbidity	Wiper Changed? Y/N	Wiper parks ~180	degrees from optic port? Y/N
	Standards Values Zero	; (NTUs) _(Always First) 	Calibration Values InItial Post Cal.
Note: Use	longer probe guard with	i bjack turb probe; shorter guard	i with grey probe.
with a high	ndset (650MDS). Wait 1 value and descend to th	est Calibration DO Sensor Out (minule, turn handset on and er e calibration value in 1 to 2 minu ngs as they may be affected by t Reject? Calibration Comments	nter "Run". DO % Sat. must start reading utes. If it does not, reject. the warm-up process.

r.

Environment Testing

Eurofins Environment Testing South Central, LLC 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

December 22, 2023

Patrick Chavez AMAFCA 2600 Prospect Ave NE Albuquerque, NM 87107 TEL: (505) 884-2215 FAX: 12/13/2023: Rio Grande North and Alameda; E.Coli samples only.

RE: CMC

OrderNo.: 2312802

Dear Patrick Chavez:

Eurofins Environment Testing South Central, LLC received 2 sample(s) on 12/13/2023 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please do not hesitate to contact Eurofins Albuquerque for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Field Parameters: - North Temp = 5.0° C pH = 8.15Conductivity = 305Dissolved Oxygen = 10.8- Alameda Temp = 7.1° C pH = 7.73Conductivity = 310Dissolved Oxygen = 10.7

Analytical Report Lab Order 2312802

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 12/22/2023

CLIENT: AMAFCA Client Sample ID: RG North-20231213										
Project:	oject: CMC Collection Date: 12/13/									
Lab ID:	2312802-001	Matrix: A(QUEOUS	Rece	Received Date: 12/13/2023 1:54:00 PM					
Analyses		Result	MDL	RL	Qual Unit	s DF	Date Analyzed	Batch ID		
SM 9223E	B FECAL INDICATOR: E. (Analyst: SMS					
E. Coli		<mark>19.7</mark>	1.000	1.000 MPN/100 1 12/14/2			12/14/2023 12:33:00	4/2023 12:33:00 PM 79369		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- В Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits Sample pH Not In Range
- Р RL Reporting Limit

[%] Recovery outside of standard limits. If undiluted results may be estimated. S

Analytical Report Lab Order 2312802

SM 9223B FECAL INDICATOR: E. COLI MPN								Analyst: SI			
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch II		
Lab ID:	2312802-002	Matrix: A	Matrix: AQUEOUS Received Date: 12/13/20								
Project:	CMC		Collection Date: 12/13/2023 1:25:00 PM								
CLIENT:	AMAFCA		Client Sample ID: RG Alameda-20231213								

1.000

1.000

MPN/100 1

<mark>55</mark>.6

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 12/22/2023

12/14/2023 12:33:00 PM 79369

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

E. Coli

* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S
- В Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits Sample pH Not In Range
- Р RL Reporting Limit

🔅 eurofins

Environment Testin

Eurofins Environment Testing South Central, LLC 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name: AMAFCA	Work Order Number: 2312802	2	RcptNo: 1
Received By: Juan Rojas	12/13/2023 1:54:00 PM	Grand g	-
Completed By: Cheyenne Cason	12/13/2023 3:06:49 PM	Chent	
Reviewed By: 12/13	123 Ø 15:52		
Chain of Custody			
1. Is Chain of Custody complete?	Yes 🗸	No	Not Present
2. How was the sample delivered?	Client		
Log In	_		
3. Was an attempt made to cool the samples	s? Yes 🗹	No	NA
4. Were all samples received at a temperatur		No 🖌	
5	Samples were collected		d chilled.
5. Sample(s) in proper container(s)?	Yes 🗸	No	
6. Sufficient sample volume for indicated test	(s)? Yes 🗹	No 🗌	
7. Are samples (except VOA and ONG) prope	erly preserved? Yes 🗹	No 🗌	
8. Was preservative added to bottles?	Yes 🗌	No 🗹	NA 🗌
9. Received at least 1 vial with headspace <1	/4" for AQ VOA? Yes	No 🗍	NA 🗹
10. Were any sample containers received brol	ken? Yes	No 🗹	# of preserved
11.Does paperwork match bottle labels?	Yes 🔽	No 🗌	bottles checked for pH:
(Note discrepancies on chain of custody)	P		Adjusted?
2. Are matrices correctly identified on Chain of		No 🗌	
3. Is it clear what analyses were requested?	Yes 🗹	No 🗌	Checked by: TMC 12/13
4. Were all holding times able to be met? (If no, notify customer for authorization.)	Yes 🗹	No	Checked by. (114 12110)
Special Handling (if applicable)			
15. Was client notified of all discrepancies wit	h this order? Yes	No 🗌	NA 🗹
Person Notified:	Date:		
By Whom:	Via: eMail	Phone Fax	In Person
Regarding:			
Client Instructions:			
,			

C			istouy Record	Turn-Around	Time:					Ь	A	LL	E	NV	TE	20	NM	IEN		L
Client:	Dun	iel B	Stephenis	🔏 Standard					_									RAT		
A	MAF	= cA	0	Project Name	э:	2														
Mailing	Address	= CA : 602	O Academy	Cm	\sim		www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109													
		3	0	Project #:			Tel. 505-345-3975 Fax 505-345-4107													
Phone :	#:			Dry	SLASUM	FYZY	Analysis Request													
email o	r Fax#:	pcha	VIL @ Amatca.org				Ê	ô					₄ , SO ₄			f)				
QA/QC	Package:						302	MR	PCB's		MS				2	bse	٤	- 6		
□ Stan	dard		□ Level 4 (Full Validation)				3's (8	l õ	P		8270SIMS		PO			ntA	Ę			
Accredi		🗆 Az Co	mpliance	Sampler: D	BSA -C	-Johannesen	TMB's (8021)	TPH:8015D(GRO / DRO / MRO)	8081 Pesticides/8082	Ē			NO ₂ , PO ₄ ,			Total Coliform (Present/Absent)	enumention			
		□ Other			-Yes	□ No		RO	ses/8	EDB (Method 504.1)	P C	S			8270 (Semi-VOA)	P.	IN			
) (Type) <u>-</u> I			# of Coolers:		Y 09:	TBE	9	icid	por	3310	leta	NO	8	- - -	E L	5			
				Cooler Temp	(Including CF):	s. 7 + (. 1=8.8 (°C)	BTEX / MTBE	0151	est	Meth	PAHs by 8310	RCRA 8 Metals	Cl, F, Br, NO ₃ ,	8260 (VOA)	Sen	Solif				
				Container	Preservative	HEAL No.	Х	H:8	81 F	B	Hs	Å.	ц	90 (02	tal	Ecoli		-	
Date	Time	Matrix	Sample Name	Type and #	Туре	2312802	BT	Ę	80		PA	RC	Ū,	82(82	Чo Н	Ш			
12-13-23	1200	AQ	RGN0+H-20231213	1		001											\times	58 U)	300	
12-13-23	1325	AQ	RGA lAmeda - 202312	13 1		GOR						2 86. 7		() () 			×		1	
				а. С	NUM VILLE											1.5				
	6 T															0.0411				
					1 di												1.00			
													1.1	101			1.1.1.1.1			
									\neg		-	-				_			+	
								1.00		_	_		12 14	10.00	1.11		1000		-	
									_			_						-		
									_			-	19	- 2		100	201	-	-	
					ne bi vére				-	_	_	_	_					_	_	
										0				r de la fact	14			-		
Detry	Timera	Delle suitet		Dessity of here		Deta														
Date:	23	Relinquish	ed by	Received by:	Wia		Ren	narks	5:											
Date:	Time:	Relinquish		Received by	Via:	12/12/23 13:54 Date Time	#1													
			· V																	5

,,

Environment Testing

Eurofins Environment Testing South Central, LLC 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

March 05, 2024 Patrick Chavez

AMAFCA 2600 Prospect Ave NE Albuquerque, NM 87107 TEL: (505) 884-2215 FAX: 12/13/2023: Rio Grande North and 12/14/2023: Rio Grande South

RE: CMC FY24 Dry

OrderNo.: 2312898

Dear Patrick Chavez:

Eurofins Environment Testing South Central, LLC received 2 sample(s) on 12/14/2023 for the analyses presented in the following report.

This report is a revised report and it replaces the original report issued January 26, 2023.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. All samples are reported as received unless otherwise indicated.

Please do not hesitate to contact Eurofins Albuquerque for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Field Parameters: - <u>North</u> Temp = 5.0°C pH = 8.15 Conductivity = 305 Dissolved Oxygen = 10.8 - <u>South</u> Temp = 9.2°C pH = 8.24 Conductivity = 338 Dissolved Oxygen = 9.0

Environment Testing

Eurofins Environment Testing South Central, LLC 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Case Narrative

WO#: 2312898 Date: 3/5/2024

CLIENT: AMAFCA Project: CMC FY24 Dry

Analytical Notes regarding phosphorous:

The "C" fraction contains the results for total phosphorous.

The "D" fraction contains the results for the dissolved phosphorous.

Lab Order: 2312898

Hall Envi	ronmental Ana	lysis Laborato	ry, Inc.				Date	Reported: 3	/5/202	4	
CLIENT:	AMAFCA			Client	Sampl	e ID: <mark>R6</mark>	Nortl	n-20231213			
Project:	CMC FY24 Dry			Coll	ection]	Date: 12	/13/20	23 12:00:00 Pl	M		
Lab ID:	2312898-001B		Matrix: Aqueous								
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyz	ed 1	Batch ID	
SM5210B: BC	D							Analys	t: ejn		
Biochemical O	xygen Demand	DO Depletion <2.0	2.00	2.00	Н	mg/L	1	12/20/2023 9:50):00 AN	1 79411	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

D Sample Diluted Due to Matrix

*

Н Holding times for preparation or analysis exceeded

Value exceeds Maximum Contaminant Level.

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

- % Recovery outside of standard limits. If undiluted results may be estimated. S
- Analyte detected in the associated Method Blank Above Quantitation Range/Estimated Value Е
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Lab Order: 2312898

Hall Envi	Hall Environmental Analysis Laboratory, Inc.					Date	Reported: 3/5/2	2024				
CLIENT:	AMAFCA			Client	Sample <mark>ID:</mark> I	R6 Nort	h-20231213					
Project:	CMC FY24 Dry			Colle	ection Date: 1	2/13/20	23 12:00:00 PM					
Lab ID:	2312898-001C		Matrix: Aqueous									
Analyses		Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID				
EPA METHO	D 1664B						Analyst: /	B				
N-Hexane Extr	actable Material	ND	8.53	9.58	9.58 mg/L 1 12/19/2023 11:40:00 AM 79435							

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

Value exceeds Maximum Contaminant Level.

- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S
- Above Quantitation Range/Estimated Value Е

Analyte detected in the associated Method Blank

- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Date Reported:

Hall Environmental Analysis Laboratory, Inc.

Lab Order: 2312898

3/5/2024

CLIENT: Project: Lab ID:	AMAFCA CMC FY24 Dry 2312898-001D	Client Sample ID: R6 North-20231213 Collection Date: 12/13/2023 12:00:00 PM Matrix: Aqueous								
Analyses	2512070 0011	Result	MDL	RL		Units	DF		itch ID	
EPA METHOD	0 300.0: ANIONS						-	Analyst: SNS		
Nitrate+Nitrite	as N	ND	0.11	1.0		mg/L	5	12/19/2023 2:58:45 PM	R10196	
SM 4500 NH3	: AMMONIA							Analyst: MCA		
Nitrogen, Amm	ionia	1.1	0.57	2.0	JD	mg/L	<mark>2</mark>	12/21/2023 9:18:00 AM	R10201	
SM4500-H+B	/ 9040C: PH							Analyst: MCA		
рН		8.14			Н	pH units	1	12/20/2023 1:56:15 PM	R10201	
EPA METHOD	365.1: TOTAL PHOSPHO	ROUS						Analyst: JMT		
Phosphorus, T	otal (As P)	ND	0.050	0.050		mg/L	1	1/6/2024 1:42:00 PM	79761	
SM2540C MO	D: TOTAL DISSOLVED SC	DLIDS						Analyst: KS		
Total Dissolved	d Solids	204	25.0	50.0		mg/L	1	12/21/2023 7:22:00 PM	79518	
EPA 351.2: T	KN							Analyst: MRA		
Nitrogen, Kjeld	ahl, Total	ND	0.50	0.50	Н	mg/L	1	1/13/2024 3:06:27 PM	79864	
SM 2540D: TS	SS							Analyst: KS		
Suspended So	lids	6.0	4.0	4.0		mg/L	1	12/21/2023 10:31:00 AM	79522	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

D Sample Diluted Due to Matrix

*

Н Holding times for preparation or analysis exceeded

Value exceeds Maximum Contaminant Level.

ND Not Detected at the Reporting Limit PQL Practical Quanitative Limit

% Recovery outside of standard limits. If undiluted results may be estimated. S

Above Quantitation Range/Estimated Value Е

Analyte detected in the associated Method Blank

J Analyte detected below quantitation limits

Р Sample pH Not In Range

RL Reporting Limit

Lab Order: 2312898

Hall Envi	ronmental Analysi	s Laborato	ry, Inc.			Date	Reported: 3/5/2	024				
CLIENT:	AMAFCA			Client	Sample ID: R	6 Nortl	h-20231213					
Project:	CMC FY24 Dry			Colle	ection Date: 12	2/13/20	23 12:00:00 PM					
Lab ID:	2312898-001E		Matrix: Aqueous									
Analyses		Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID				
EPA METHO	O 365.1: TOTAL PHOSPHO	DROUS					Analyst: JI	ит				
Phosphorus, T	otal (As P)	ND	0.050	0.050	mg/L	1	1/6/2024 1:46:00 PN	1 79761				

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

D Sample Diluted Due to Matrix

*

H Holding times for preparation or analysis exceeded

Value exceeds Maximum Contaminant Level.

- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- E Above Quantitation Range/Estimated Value

Analyte detected in the associated Method Blank

- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order: 2312898

3/5/2024

CLIENT: Project: Lab ID:	AMAFCA CMC FY24 Dry 2312898-001F	Client Sample ID: R6 North-20231213 Collection Date: 12/13/2023 12:00:00 PM Matrix: Aqueous								
Analyses		Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID		
EPA METHOD	200.7: METALS						Analyst: JR	R		
Calcium		36	0.053	1.0	mg/L	1	1/9/2024 5:14:22 PM	79508		
Magnesium		6.6	0.033	1.0	mg/L	1	1/9/2024 5:14:22 PM	79508		
SM2340B: HA	RDNESS	Analyst: JF						R		
Hardness as C	aCO3	120	2.5	6.6	mg/L	1	1/9/2024	R10233		

Hall Environmental Analysis Laboratory, Inc.

Date Reported:

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

D Sample Diluted Due to Matrix

*

- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S

Value exceeds Maximum Contaminant Level.

- В Analyte detected in the associated Method Blank Above Quantitation Range/Estimated Value Е
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Lab Order: 2312898

Date Reported:

	Ū											
CLIENT:	AMAFCA		Client Sample ID: R6 North-20231213									
Project:	CMC FY24 Dry		Collection Date: 12/13/2023 12:00:00 PM									
Lab ID:	2312898-001G		Matrix: Aqueous									
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID			
EPA 200.8: D	DISSOLVED METALS							Analyst: b	ev .			
Copper		0.00055	0.000093	0.00050		mg/L	1	12/19/2023 1:35:18	PM B101952			
Lead		ND	0.000032	0.00050		mg/L	1	12/19/2023 1:35:18	PM B101952			

Hall Environmental Analysis Laboratory, Inc.

3/5/2024

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

D Sample Diluted Due to Matrix

*

Н Holding times for preparation or analysis exceeded

Value exceeds Maximum Contaminant Level.

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

- % Recovery outside of standard limits. If undiluted results may be estimated. S
- В Analyte detected in the associated Method Blank Above Quantitation Range/Estimated Value Е
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Lab Order: 2312898

Hall Envi	ronmental Analysi	s Laborato	ry, Inc.			Date	Reported:	3/5/202	24			
CLIENT:	AMAFCA				Sample ID: R							
Project: Lab ID:	CMC FY24 Dry 2312898-001H		Collection Date: 12/13/2023 12:00:00 PM Matrix: Aqueous									
Analyses		Result	MDL	RL	Qual Units	DF	Date Analy	zed	Batch ID			
SM5220D: CC	D						Analy	st: AB				
Chemical Oxy	gen Demand	110	50.0	50.0 mg/L 1 1/3/2024 10:26:00 AM 79689					79689			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

D Sample Diluted Due to Matrix

*

Н Holding times for preparation or analysis exceeded

Value exceeds Maximum Contaminant Level.

- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S
- Е Above Quantitation Range/Estimated Value

Analyte detected in the associated Method Blank

- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Lab Order: 2312898

Hall Envi	Hall Environmental Analysis Laboratory, Inc.						Date	Reported:	3/5/20	124
CLIENT:	AMAFCA			Client	Sampl	e ID: <mark>R6</mark>	South	-20231214		
Project:	CMC FY24 Dry			Colle	ection I	Date: 12	/14/20	23 2:45:00 PM	M	
Lab ID:	2312898-002A	Matrix: Aqueous								
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analy	zed	Batch ID
SM 9223B FE	CAL INDICATOR: E. COL	I MPN						Analy	st: SN	IS
E. Coli		235.9 1.000 1.000 MPN/100 1 12/15/2023 12:00:00 PM							PM 79402	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

Value exceeds Maximum Contaminant Level.

- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S
- В Analyte detected in the associated Method Blank Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Lab Order: 2312898

Hall Envi	ronmental Ana	lysis Laborato	ry, Inc.			Dat	e Reported: 3/5	5/2024			
CLIENT:	AMAFCA			Client	Sample ID	R6Sout	h-20231214				
Project:	CMC FY24 Dry			Coll	ection Date:	12/14/2	023 2:45:00 PM				
Lab ID:	2312898-002B		Matrix: Aqueous								
Analyses		Result	MDL	RL	Qual Uni	its DF	Date Analyze	d Batch ID			
SM5210B: BC	D						Analyst:	ejn			
Biochemical O	xygen Demand	DO Depletion <2.0	2.00	2.00	mg/	L 1	12/20/2023 9:50:0	0 AM 79411			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

D Sample Diluted Due to Matrix

*

H Holding times for preparation or analysis exceeded

Value exceeds Maximum Contaminant Level.

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

- S % Recovery outside of standard limits. If undiluted results may be estimated.
- E Above Quantitation Range/Estimated Value

Analyte detected in the associated Method Blank

- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order: 2312898

Hall Envi	Hall Environmental Analysis Laboratory, Inc.					Date	Reported: 3/5/2	024				
CLIENT:	AMAFCA			Client	Sample ID: Ro	South	-20231214					
Project:	CMC FY24 Dry			Coll	ection Date: 12	/14/20	23 2:45:00 PM					
Lab ID:	2312898-002C		Matrix: Aqueous									
Analyses		Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID				
EPA METHO	D 1664B				Analyst: AB							
N-Hexane Extr	actable Material	ND	8.73	9.80 mg/L 1 12/19/2023 11:40:00 AM 7943								

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

Value exceeds Maximum Contaminant Level.

- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S
- Above Quantitation Range/Estimated Value Е

Analyte detected in the associated Method Blank

- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Lab Order: 2312898

Hall Envi	ronmental Analysis	Laborato	ry, Inc.					e Reported: 3/5/2024	4				
CLIENT: Project: Lab ID:	AMAFCA CMC FY24 Dry 2312898-002D		Client Sample ID: R6South-20231214 Collection Date: 12/14/2023 2:45:00 PM Matrix: Aqueous										
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID				
(EPA METHOD (Nitrate+Nitrite a	9 300.0: ANIONS as N	0.32	0.11	<mark>(1.0</mark>)	J	(mg/L)	<mark>5</mark>	Analyst:) SNS (12/19/2023 3:14:28 PM					
SM 4500 NH3 Nitrogen, Amm	onia	0.84	0.57	2.0	JD	mg/L	2	(Analyst:) (MC/ (12/21/2023 9:18:00 AM	R10201				
SM4500-H+В , рН		8.17			Н	pH units	1	Analyst: MCA 12/20/2023 2:00:25 PM	R10201				
Phosphorus, T		0.14	0.050	0.050		mg/L	1	Analyst: JMT 1/6/2024 1:48:00 PM	79761				
Total Dissolved		226 226	25.0	50.0		mg/L	1	Analyst: KS 12/21/2023 7:22:00 PM					
EPA 351.2: T Nitrogen, Kjelda		ND	0.50	0.50		mg/L	1	Analyst: MR/ 1/13/2024 3:10:57 PM	A 79864				
SM 2540D: TS Suspended So	-	22	4.0	4.0		mg/L	1	Analyst: KS 12/22/2023 10:47:00 Al	VI 79546				

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

rs: D Sample Diluted Due to Matrix

*

H Holding times for preparation or analysis exceeded

Value exceeds Maximum Contaminant Level.

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

E Above Quantitation Range/Estimated Value

Analyte detected in the associated Method Blank

- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order: 2312898

Hall Envi	ronmental Analysi	s Laborato	ry, Inc.			Date	Reported: 3/5/2	024				
CLIENT:	AMAFCA			Client	Sample ID: R	6South	-20231214					
Project:	CMC FY24 Dry		Collection Date: 12/14/2023 2:45:00 PM									
Lab ID:	2312898-002E		Matrix: Aqueous									
Analyses		Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID				
EPA METHO	D 365.1: TOTAL PHOSPH	OROUS					Analyst: JN	ИТ				
Phosphorus, T	otal (As P)	0.065 0.050 0.050 mg/L 1 1/6/2024 1:49:00 PM 79										

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

D Sample Diluted Due to Matrix

*

- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit % Recovery outside of standard limits. If undiluted results may be estimated. S

Value exceeds Maximum Contaminant Level.

- Analyte detected in the associated Method Blank Above Quantitation Range/Estimated Value Е
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Lab Order: 2312898

CLIENT: Project: Lab ID:	AMAFCA CMC FY24 Dry 2312898-002F	Client Sample ID: R6South-20231214 Collection Date: 12/14/2023 2:45:00 PM Matrix: Aqueous						
Analyses		Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD	200.7: METALS						Analyst: JR	R
Calcium		39	0.053	1.0	mg/L	1	1/9/2024 5:18:26 PM	79508
Magnesium		7.0	0.033	1.0	mg/L	1	1/9/2024 5:18:26 PM	79508
SM2340B: HARDNESS							Analyst: JR	R
Hardness as C	CaCO3	130	2.5	6.6	mg/L	1	1/9/2024	R10233

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 3/5/2024

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

D Sample Diluted Due to Matrix

*

Н Holding times for preparation or analysis exceeded

Value exceeds Maximum Contaminant Level.

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

- Analyte detected in the associated Method Blank Above Quantitation Range/Estimated Value Е
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

[%] Recovery outside of standard limits. If undiluted results may be estimated. S

Lab Order: 2312898

Hall Environmental Analysis Laboratory, Inc.							Date	Reported: 3/5/2	024
CLIENT: Project:	AMAFCA CMC FY24 Dry	Client Sample ID: R6South-20231214 Collection Date: 12/14/2023 2:45:00 PM							
Lab ID:	2312898-002G	Matrix: Aqueous							
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA 200.8: D	DISSOLVED METALS							Analyst: be	cv
Copper		0.00075	0.000093	0.00050		mg/L	1	12/19/2023 1:37:35	PM B101952
Lead		ND	0.000032	0.00050		mg/L	1	12/19/2023 1:37:35	PM B101952

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

Value exceeds Maximum Contaminant Level.

ND Not Detected at the Reporting Limit PQL Practical Quanitative Limit

- % Recovery outside of standard limits. If undiluted results may be estimated. S
- Analyte detected in the associated Method Blank Above Quantitation Range/Estimated Value Е
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Lab Order: 2312898

Hall Environmental Analysis Laboratory, Inc.					Date Reported: 3/5/2024						
CLIENT:	AMAFCA	Client Sample ID: R6South-20231214 Collection Date: 12/14/2023 2:45:00 PM Matrix: Aqueous									
Project:	CMC FY24 Dry										
Lab ID:	2312898-002H										
Analyses		Result	MDL	RL	Qual Uni	ts DF	Date Analyzed	Batch ID			
SM5220D: COD							Analyst: 🖌	٩B			
Chemical Oxygen Demand		ND	50.0	50.0	mg/	L 1	1/3/2024 10:26:00	AM 79689			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

D Sample Diluted Due to Matrix

*

Н Holding times for preparation or analysis exceeded

Value exceeds Maximum Contaminant Level.

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of standard limits. If undiluted results may be estimated. S

Analyte detected in the associated Method Blank Above Quantitation Range/Estimated Value Е

J Analyte detected below quantitation limits

Р Sample pH Not In Range

RL Reporting Limit

Anatek Labs, Inc. 1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - email spokane@anateklabs.com

Hall Environmental Analysis Lab Client: 4901 Hawkins NE Suite D Address: Albuquerque, NM 87109 Andy Freeman Attn:

Work Order: Project: Reported:

MDL0646 2312898 2/19/2024 09:01

Analytical Results Report

Sample Location: Lab/Sample Number: Date Received: Matrix:	2312898-001I (R MDL0646-01 12/19/23 14:44 Water	Col	0231213) lect Date: lected By:	12/13/23 12:00				
Analyte	Re	esult	Units	PQL	Analyzed	Analyst	Method	Qualifier
Volatiles								
Tetrahydrofuran	1	ND	ug/L	0.500	12/22/23 13:35	BKP	EPA 8260D	
Surrogate: 1,2-Dichlorobenzene-d4		103%		70-130	12/22/23 13:35	ВКР	EPA 8260D	
Surrogate: 4-Bromofluorobenz	zene	75.8%		70-130	12/22/23 13:35	BKP	EPA 8260D	
Surrogate: Toluene-d8		97.6%		70-130	12/22/23 13:35	ВКР	EPA 8260D	

Page 18 of 10)3
Page 1 of 11	

Sample Location: Lab/Sample Number: Date Received: Matrix:	2312898-001N (R6 MDL0646-02 12/19/23 14:44 Water	S North-20231213) Collect Date: Collected By:	12/13/23 12:00				
Analyte	Resu	ult Units	PQL	Analyzed	Analyst	Method	Qualifier
Semivolatiles							
Dieldrin	ND	ug/L	0.0100	12/27/23 20:52	GPB	EPA 608.3	
Surrogate: DCB		83.6%	40-130	12/27/23 20:52	GPB	EPA 608.3	
Benzidine	ND	ug/L	1.00	12/29/23 0:29	MAH	EPA 625.1	
Benzo[a]anthracene	ND	ug/L	0.500	12/29/23 0:29	MAH	EPA 625.1	
Benzo[a]pyrene	ND	ug/L	0.500	12/29/23 0:29	MAH	EPA 625.1	
Benzo[b]fluoranthene	ND	ug/L	0.500	12/29/23 0:29	MAH	EPA 625.1	
Benzo[k]fluoranthene	ND	ug/L	0.500	12/29/23 0:29	MAH	EPA 625.1	
bis(2-Ethylhexyl)phthalate	ND	ug/L	0.500	12/29/23 0:29	MAH	EPA 625.1	
Chrysene	ND	ug/L	0.500	12/29/23 0:29	MAH	EPA 625.1	
Dibenz[a,h]anthracene	ND	ug/L	0.500	12/29/23 0:29	MAH	EPA 625.1	
Dibenzofuran	ND	ug/L	0.500	12/29/23 0:29	MAH	EPA 625.1	
Indeno[1,2,3-cd]pyrene	ND	ug/L	0.500	12/29/23 0:29	MAH	EPA 625.1	
Pentachlorophenol	ND	ug/L	0.500	12/29/23 0:29	MAH	EPA 625.1	
Surrogate: 2,4,6-Tribromophe	nol	92.4%	47-122	12/29/23 0:29	МАН	EPA 625.1	
Surrogate: 2-Fluorobiphenyl		81.2%	49-115	12/29/23 0:29	МАН	EPA 625.1	
Surrogate: 2-Fluorophenol		78.6%	30-115	12/29/23 0:29	МАН	EPA 625.1	
Surrogate: Nitrobenzene-d5		76.2%	51-110	12/29/23 0:29	MAH	EPA 625.1	
Surrogate: Phenol-2,3,4,5,6-d	5	81.2%	40-120	12/29/23 0:29	MAH	EPA 625.1	
Surrogate: Terphenyl-d14		106%	50-130	12/29/23 0:29	МАН	EPA 625.1	

Sample Location: Lab/Sample Number: Date Received: Matrix:	2312898-002I (<mark>R6</mark> MDL0646-03 12/19/23 14:44 Water	South-20231214) Collect Date: Collected By:	12/14/23 14:45				
Analyte	Resi	ult Units	PQL	Analyzed	Analyst	Method	Qualifier
Volatiles							
Tetrahydrofuran	NE	o ug/L	0.500	12/22/23 14:07	BKP	EPA 8260D	
Surrogate: 1,2-Dichlorobenzer	ne-d4	104%	70-130	12/22/23 14:07	ВКР	EPA 8260D	
Surrogate: 4-Bromofluoroben.	zene	76.0%	70-130	12/22/23 14:07	BKP	EPA 8260D	
Surrogate: Toluene-d8		98.1%	70-130	12/22/23 14:07	ВКР	EPA 8260D	

Sample Location: Lab/Sample Number: Date Received: Matrix:	2312898-002N <mark>(R6</mark> MDL0646-04 12/19/23 14:44 Water	South-20231214) Collect Date: Collected By:	12/13/23 12:00				
Analyte	Resul	t Units	PQL	Analyzed	Analyst	Method	Qualifier
Semivolatiles							
Dieldrin	ND	ug/L	0.0100	12/27/23 21:10	GPB	EPA 608.3	
Surrogate: DCB		90.2%	40-130	12/27/23 21:10	GPB	EPA 608.3	
Benzidine	ND	ug/L	1.00	12/29/23 0:56	MAH	EPA 625.1	
Benzo[a]anthracene	ND	ug/L	0.500	12/29/23 0:56	MAH	EPA 625.1	
Benzo[a]pyrene	ND	ug/L	0.500	12/29/23 0:56	MAH	EPA 625.1	
Benzo[b]fluoranthene	ND	ug/L	0.500	12/29/23 0:56	MAH	EPA 625.1	
Benzo[k]fluoranthene	ND	ug/L	0.500	12/29/23 0:56	MAH	EPA 625.1	
bis(2-Ethylhexyl)phthalate	ND	ug/L	0.500	12/29/23 0:56	MAH	EPA 625.1	
Chrysene	ND	ug/L	0.500	12/29/23 0:56	MAH	EPA 625.1	
Dibenz[a,h]anthracene	ND	ug/L	0.500	12/29/23 0:56	MAH	EPA 625.1	
Dibenzofuran	ND	ug/L	0.500	12/29/23 0:56	MAH	EPA 625.1	
Indeno[1,2,3-cd]pyrene	ND	ug/L	0.500	12/29/23 0:56	MAH	EPA 625.1	
Pentachlorophenol	ND	ug/L	0.500	12/29/23 0:56	MAH	EPA 625.1	
Surrogate: 2,4,6-Tribromopher	nol	90.8%	47-122	12/29/23 0:56	МАН	EPA 625.1	
Surrogate: 2-Fluorobiphenyl		86.7%	49-115	12/29/23 0:56	МАН	EPA 625.1	
Surrogate: 2-Fluorophenol		78.2%	30-115	12/29/23 0:56	MAH	EPA 625.1	
Surrogate: Nitrobenzene-d5		84.8%	51-110	12/29/23 0:56	МАН	EPA 625.1	
Surrogate: Phenol-2,3,4,5,6-d5		82.5%	40-120	12/29/23 0:56	MAH	EPA 625.1	
Surrogate: Terphenyl-d14		108%	50-130	12/29/23 0:56	МАН	EPA 625.1	

Authorized Signature,

Justin Doty For Todd Taruscio, Laboratory Manager

PQL Practical Quantitation Limit

- ND Not Detected
- MCL EPA's Maximum Contaminant Level
- Dry Sample results reported on a dry weight basis
- * Not a state-certified analyte

This report shall not be reproduced except in full, without the written approval of the laboratory The results reported related only to the samples indicated.

Page 22 of 103
Page 5 of 11

Quality Control Data

Semivolatiles

Analysis	Descili	Qual	Reporting	Linite	Spike	Source		%REC	DDD	RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BDL0839 - Pesticides										
Blank (BDL0839-BLK1)				Pre	oared: 12/20	/2023 Analyze	ed: 12/27/202	23		
Dieldrin	ND		0.0100	ug/L						
Surrogate: DCB			1.36	ug/L	1.25		109	40-130		
LCS (BDL0839-BS1)				Pre	oared: 12/20	/2023 Analyze	ed: 12/27/202	23		
Dieldrin	0.488		0.0100	ug/L	0.500		97.6	73-136		
Surrogate: DCB			1.15	ug/L	1.25		91.7	40-130		
Matrix Spike (BDL0839-MS1)		Source: M	DL0646-02	Pre	pared: 12/20	/2023 Analyze	ed: 12/27/202	23		
Dieldrin	0.494		0.0100	ug/L	0.500	ND	98.7	66-129		
Surrogate: DCB			1.00	ug/L	1.25		80.1	40-130		
Matrix Spike Dup (BDL0839-MSD1)		Source: M	DL0646-02	Pre	oared: 12/20	/2023 Analyze	ed: 12/27/202	23		
Dieldrin	0.507		0.0100	ug/L	0.500	ND	101	66-129	2.67	30
Surrogate: DCB			1.09	ug/L	1.25		86.9	40-130		
Blank (BDL0939-BLK1)				Pre	oared: 12/20	/2023 Analyze	ed: 12/28/202	23		
Benzidine	ND		1.00	ug/L		,				
Di (2-ethylhexyl) phthalate	ND									
Indeno(1,2,3-cd)pyrene			0.500	ug/L						
	ND		0.500 0.500	ug/L ug/L						
Dibenzofuran	ND ND									
Dibenzofuran Dibenz(a,h)anthracene			0.500	ug/L						
	ND		0.500 0.500	ug/L ug/L						
Dibenz(a,h)anthracene	ND ND		0.500 0.500 0.500	ug/L ug/L ug/L						
Dibenz(a,h)anthracene Chrysene	ND ND ND		0.500 0.500 0.500 0.500	ug/L ug/L ug/L ug/L						
Dibenz(a,h)anthracene Chrysene Pentachlorophenol	ND ND ND		0.500 0.500 0.500 0.500 0.500	ug/L ug/L ug/L ug/L ug/L						
Dibenz(a,h)anthracene Chrysene Pentachlorophenol Benzo[k]fluoranthene	ND ND ND ND		0.500 0.500 0.500 0.500 0.500 0.500	ug/L ug/L ug/L ug/L ug/L ug/L						
Dibenz(a,h)anthracene Chrysene Pentachlorophenol Benzo[k]fluoranthene Benzo[b]fluoranthene	ND ND ND ND ND		0.500 0.500 0.500 0.500 0.500 0.500 0.500	ug/L ug/L ug/L ug/L ug/L ug/L						
Dibenz(a,h)anthracene Chrysene Pentachlorophenol Benzo[k]fluoranthene Benzo[b]fluoranthene Benzo[a]anthracene	ND ND ND ND ND		0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	50.0		87.5	40-120		
Dibenz(a,h)anthracene Chrysene Pentachlorophenol Benzo[k]fluoranthene Benzo[b]fluoranthene Benzo[a]anthracene Benzo[a]pyrene	ND ND ND ND ND		0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	50.0 25.0		87.5 84.0	40-120 51-110		
Dibenz(a,h)anthracene Chrysene Pentachlorophenol Benzo[k]fluoranthene Benzo[b]fluoranthene Benzo[a]anthracene Benzo[a]pyrene <i>Surrogate: Phenol-2,3,4,5,6-d5</i>	ND ND ND ND ND		0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 <i>43.7</i>	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L						
Dibenz(a,h)anthracene Chrysene Pentachlorophenol Benzo[k]fluoranthene Benzo[b]fluoranthene Benzo[a]anthracene Benzo[a]pyrene <i>Surrogate: Phenol-2,3,4,5,6-d5</i> <i>Surrogate: Nitrobenzene-d5</i>	ND ND ND ND ND		0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 <i>43.7</i> 21.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	25.0		84.0	51-110		
Dibenz(a,h)anthracene Chrysene Pentachlorophenol Benzo[k]fluoranthene Benzo[a]anthracene Benzo[a]pyrene Surrogate: Phenol-2,3,4,5,6-d5 Surrogate: Nitrobenzene-d5 Surrogate: Terphenyl-d14	ND ND ND ND ND		0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 <i>43.7</i> <i>21.0</i> <i>27.5</i>	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	25.0 25.0		84.0 110	51-110 50-130		

Quality Control Data

(Continued)

Semivolatiles (Continued)

		Reporting		Spike	Source		%REC		RPE
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limi
atch: BDL0939 - SVOC Wate	r (Continued)								
.CS (BDL0939-BS1)	()		Pre	pared: 12/20	/2023 Analyze	ed: 12/28/202	23		
Indeno(1,2,3-cd)pyrene	4.19	0.500	ug/L	5.00		83.8	67-120		
Benzo[k]fluoranthene	5.01	0.500	ug/L	5.00		100	70-122		
Dibenzofuran	4.03	0.500	ug/L	5.00		80.6	70-120		
Dibenz(a,h)anthracene	4.30	0.500	ug/L	5.00		86.0	64-120		
Benzo[a]anthracene	4.61	0.500	ug/L	5.00		92.2	70-120		
Di (2-ethylhexyl) phthalate	4.85	0.500	ug/L	5.00		97.0	61-141		
Benzo[b]fluoranthene	4.63	0.500	ug/L	5.00		92.6	70-120		
Chrysene	4.80	0.500	ug/L	5.00		96.0	70-120		
Benzo[a]pyrene	4.19	0.500	ug/L	5.00		83.8	64-120		
Pentachlorophenol	4.41	0.500	ug/L	5.00		88.2	61-120		
• • • • • • • • • • • • • • • • • • • •	1.T1								
Surrogate: Phenol-2,3,4,5,6-d5		39.4	ug/L	50.0		78.8	40-120		
Surrogate: Nitrobenzene-d5		21.2	ug/L	25.0		84.6	51-110		
Surrogate: Terphenyl-d14		25.7	ug/L	25.0		103	50-130		
Surrogate: 2-Fluorophenol		34.9	ug/L	<i>50.0</i>		<i>69.7</i>	30-115		
Surrogate: 2-Fluorobiphenyl		21.9	ug/L	25.0		87.7	<i>49-115</i>		
Surrogate: 2,4,6-Tribromophenol		43.8	ug/L	50.0		87.7	47-122		
LCS Dup (BDL0939-BSD1)			Pre	pared: 12/20	/2023 Analyze	ed: 12/28/202	23		
Dibenz(a,h)anthracene	4.32	0.500	ug/L	5.00		86.4	64-120	0.464	25
Dibenzofuran	4.36	0.500	ug/L	5.00		87.2	70-120	7.87	25
Indeno(1,2,3-cd)pyrene	4.22	0.500	ug/L	5.00		84.4	67-120	0.713	25
Pentachlorophenol	4.68	0.500	ug/L	5.00		93.6	61-120	5.94	25
Chrysene	4.76	0.500	ug/L	5.00		95.2	70-120	0.837	25
Benzo[a]anthracene	4.56	0.500	ug/L	5.00		91.2	70-120	1.09	25
Di (2-ethylhexyl) phthalate	4.62	0.500	ug/L	5.00		92.4	61-141	4.86	25
Benzo[a]pyrene	4.40	0.500	ug/L	5.00		88.0	64-120	4.89	25
Benzo[b]fluoranthene	4.62	0.500	ug/L	5.00		92.4	70-120	0.216	25
Benzo[k]fluoranthene	5.00	0.500	ug/L	5.00		100	70-122	0.200	25
Surrogate: Phenol-2,3,4,5,6-d5		46.2	ug/L	50.0		92.4	40-120		
Surrogate: Nitrobenzene-d5		23.2	ug/L	25.0		92.8	51-110		
Surrogate: Terphenyl-d14		26.0	ug/L	25.0		104	50-130		
Surrogate: 2-Fluorophenol		46.5	ug/L	50.0		93.0	30-115		
Surrogate: 2-Fluorobiphenyl		23.9	ug/L	25.0		95.7	49-115		
Surrogate: 2,4,6-Tribromophenol		48.7	ug/L	50.0		97.4	47-122		

Quality Control Data

(Continued)

Volatiles

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BDL0895 - VOC									
Blank (BDL0895-BLK1)				Prepared 8	Analyzed: 12	/21/2023			
Tetrahydrofuran	ND	0.500	ug/L						
Surrogate: 4-Bromofluorobenzene		19.1	ug/L	20.0		95.4	70-130		
Surrogate: Toluene-d8		19.5	ug/L	20.0		97.7	70-130		
Surrogate: 1,2-Dichlorobenzene-d4		20.0	ug/L	20.0		100	70-130		
LCS (BDL0895-BS1)				Prepared 8	Analyzed: 12	/22/2023			
Tetrahydrofuran	20.0	0.500	ug/L	20.0	,	100	80-120		

Quality Control Data

(Continued)

Volatiles (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BDL0895 - VOC (Continued)										
LCS (BDL0895-BS1)					Prepared &	Analyzed: 12	/22/2023			
Surrogate: Toluene-d8			20.0	ug/L	20.0		99.8	70-130		
Surrogate: 4-Bromofluorobenzene			16.0	ug/L	20.0		80.2	70-130		
Surrogate: 1,2-Dichlorobenzene-d4			20.0	ug/L	20.0		100	70-130		

🔅 et		vironment Testing	CHAIN OF C	USTODY	RECORD	1 OF: 1	Eı	MDL0646 Due: 01/04/24	Page 26 of 103 Page 9 of 11
SUB CO	NTRATOR Anate	k ID COMPANY:	Anatek Labs,	Inc.	PHONE:	(208) 883-2839	FAX	(208) 882-9246	
ADDRE	ss: 1282 A	Alturas Dr			ACCOUNT #:		EMAIL:		
CITY, S	TATE, ZIP. Mosco	w, ID 83843							
ITEM	SAMPLE	CLIENT SAMPLE ID	ВОТТ ТҮР		COLLECTION DATE	# CONTAINERS	ANALYTIC	AL COMMENTS	
1	2312898-001I	R6 North-20231213	VOAHCI	Aqueous	12/13/2023 12:00:00 PM	3 Tetrahydrofuran by 8	260 only		
2	2312898-001N	R6 North-20231213	1LAMGU	J Aqueous	12/13/2023 12:00:00 PM	2 608, 625 See Attache	xd-		
3	2312898-002I	R6South-20231214	VOAHCI	L Aqueous	12/14/2023 2:45:00 PM	3 Tetrahydrofuran by 8	260 only		
4	2312898-002N	R6South-20231214	1LAMG	J Aqueous	12/14/2023 2:45:00 PM	2 608, 625 See Attache	ed-		

SPECIAL INSTRUCTIONS / COMMENTS:

Include the LAB ID and CLIENT SAMPLE ID on final reports. Email results to Hall.Lab@et.eurofinsus.com. For Questions email Hall.samplecontrol@et.eurofinsus.com. Please return all coolers and blue ice. Thank you.

		Received By Stu	Date 12 June 123	Time:	REPOR	T TRANSMITT	TAL DESIRED:	
	and the second se		and the second		HARDCOPY (extra cost)	🗌 FAX	EMAIL	ONLINE
Date	nine.	Received By	Date	Thire.	1	FOR LAB USE	ONLY	
Date:	Time:	Received By:	Date	Time:				
					Temp of samples	C	Attempt to Cool?	
rd 🔄	RUSH	Next BD 2nd BD 2	3rd B	D				
					Comments			
	12/15/2023 Date: Date:	12/15/2023 2:48 PM Date: Time: Date: Time:	12/15/2023 2:48 PM Date. Time. Received By Date. Time. Received By	12/15/2023 2:48 PM 2000 12/19/23 Date Time Received By Date Date Time Received By Date	12/15/2023 2:48 PM DMC 12/19/23 14:44 Date Time Received By Date Time Date Time Received By Date Time	12/15/2023 2:48 PM Image: Control of the second data and the se	12/15/2023 2:48 PM Image: Contract of the second data of the seco	12/15/2023 2:48 PM Image: Contraction of the second data of the s

Collaborative Monitoring Cooperative - Analyses List Attach to Chain of Custody

Anallyte (Sole Indicanes WOS)	CAS#	Frateilon	inflettmovi#	MEL (regil
Hardness (Ca + Mg)	NA	Total	200.7	2.4
ad the second	7439-92-1	Dissolved	200.8	0.09
Copper	7440-50-8	Dissolved	.200.8	1.06
Ammonia + organic nitrogen	7664-41-7	Total	350.1	31.32
Total Kjehidal Nitrogen	17778-88-0	Total	351.2	58.78
Nitrate + Nitrite	4797-55-8	Total	353.2	10.17
Polychiorinated biphenyls (PCBs)	1336-36-3	Total	1668	0.014
Tetrahydrofuran (THF)	109-99-9	Total	8260C	7.9
bis(2-Ethylhexyl)phthalate	117-81-7	Total	8270D	0.2
Dibenzofuran	132-64-9	Total	8270D	0.2
Indeno(1,2,3-cd)pyrene	193-39-5	Total	8270D	0.2
Benzo(b)fluoranthene	205-99-2	Total	8270D	0.1
Benzo(k)fluoranthene	207-08-9	Total	8270D	0.1
Chrysene	218-01-9	Total	8270D	0.2
Benzo(a)pyrene	50-32-8	Total	8270D	0.3
Dibenzo(a,h)anthracene	53-70-3	Total	8270D	0.3
Benzo(a)anthracene	56-55-3	Total	8270D	0.2
Dieldrin	60-57-1	Total	8270D	0.1
Pentachlorophenol	87-86-5	Total	8270D	0.2
Benzidine	92-87-5	Total	8270D	0.1
Chemical Oxygen Demand	E16416382	To	НАСН	5100
Gross alpha (adjusted)	NA	Total	Method 900	0.1 pCi/L
Total Dissolved Solids	E1642222 ²	Total	SM 2540C	60.4
Total Suspended Solids	NA	Total	SM 2540D	3450
Biological Oxygen Demand	N/A	Total	Standard Methods	930
Oil and Grease	and the second sec	Total	1664A	5000
CON STATE		and the second second	SM 9223B	
	a formation		SM 4500	
Phosphorus	a state of the sta	Dissolved	365.1	100
Phosphorus		Total	365.1	100
Chromitim W		Total	3500Cr C-2011	100

C:\Users\439\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Outlook\T6KZ4S87\2016_Parameter list_CMC.doc 11/2/2016

all.

Page 27 of 103 Page 10 of 11

「

ŝ

1

				ы — <u>н</u> а – р
			and a second second	
			2011 - 17 L	
Anatek Labs, Inc. Sample Rec	eipt and Preservat	ion Form		
			Manage of solar and the solar	
		8		a concerno conservador
Client Name:Hq//			Mare Sec.	Rue of 1
TAT: Normal RUSH: days				
Samples Received From: FedEx UPS USPS	Client Courier	Other:	-	
Custody Seal on Cooler/Box: Yes No C	ustody Seals Intact	Yes No	N/A	
Number of Coolers/Boxes: T	ype of Ice: Wet Ic	ce lce Packs	Dry Ice	None
Packing Material Bubble Wrap Bags Foam/P	eanuts Paper	None Other:		
Cooler Temp As Read (°C): 3.8 Cooler Temp	Corrected (°C):	Thermome	eter Used:	125
		Co	mments:	
Samples Received Intact? Ves N	N/A		58 39	
Chain of Custody Present/Complete? Yes N	D N/A		· · · · · ·	
Labels and Chains Agree? Yes N				
Samples Received Within Hold Time? (Yes) N	20102290			
Correct Containers Received? (Yes) N			tis	-
Anatek Bottles Used? Yes N	Unknown		Jry tee	None
Total Number of Sample Bottles Received:/O_		Initial pH:	THE PROFESSION OF	aper ID:
Samples Properly Preserved?	N/A <2	the second s		
for the left of the servation and pH-after deta			Usóo	with the structure of the second structure $X_{\rm c}$ with the second structure $X_{\rm c}$ and the second structure $X_{\rm c}$ and
VOC Vials Free of Headspace (<6mm)? (Yes) N	and the second se			
VOC Trip Blanks Present? Yes	D N/A	2	1C.1.1	Literar Contribution
10 B T				No
Record preservatives (and lot numbers, if known) for co	ntainers below:			in and a
	Intainers below.			
GIL-608/625×4			1 (45) - 5 - 5 (4) (7) (4)	1984
G44 HC1 8260 by Tetrahydrofuran x 6			$\label{eq:stars} \begin{array}{l} \mathbf{x} \in \mathbf{x} \\ \mathbf{x} \in \mathbf{x} \in$	an an a' an an an an an an an an an
Stat No. 1			IN SUCCESSION	Morin
-2.3 Power Base			oli Pa	iper ID:
Samples Prop nese				and the second
Star wardst. But.			1	
Notes, comments, etc. (also use this space if contacting	the client - record	names and date/ti	me) -	a contra co
			<u></u>	Anter the second second
en es en esta de la companya de la c				1
				8 8 I S78 8
				110
ana 2007 - 14 - 14 - 14				
Analysis in a			and any and a second	Providencial and the second
	5 2 0 - 10 - 10	1	Mar Contract	S. W. C. Martin and S. Martin and
Received/Inspected By:D	ate/Time: <u>12/19</u>	123	1 1 1	car (Cr
Form F 19.01 - Eff 1 Dec 2022	1 1		Frankrik (* 1995) Frankrik (* 1995)	Page 1 of 1
and the constant of the second s			4	······································
			4	Page 28 of 103
				Page 11 of

----- B

Pace Analytical ANALYTICAL REPORT December 27, 2023

Hall Environmental Analysis Laboratory

Sample Delivery Group:

Samples Received:

Project Number:

L1689671 12/19/2023

Description:

Report To:

Andy Freeman 4901 Hawkins NE Albuquerque, NM 87109

Тс Ss Cn Sr ʹQc Gl AI Sc

Entire Report Reviewed By: John V Howkins

John Hawkins Project Manager

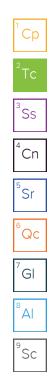
Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

ACCOUNT: Hall Environmental Analysis Laboratory

SDG: L1689671


DATE/TIME: 12/27/23 10:29

PAGE: 1 of 10

Page 29 of 103

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
2312898-001K R6 NORTH-20231213 L1689671-01	5
2312898-002K R6SOUTH-20231214 L1689671-02	6
Qc: Quality Control Summary	7
Wet Chemistry by Method 3500Cr C-2011	7
GI: Glossary of Terms	8
Al: Accreditations & Locations	9
Sc: Sample Chain of Custody	10

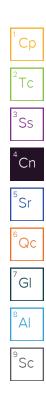
SDG: L1689671 DATE/TIME: 12/27/23 10:29

SAMPLE SUMMARY

			Collected by	Collected date/time	Received dat	te/time
2312898-001K R6 NORTH-20231213 L1689671-01	GW			12/13/23 12:00	12/19/23 09:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 3500Cr C-2011	WG2192881	1	12/27/23 02:50	12/27/23 02:50	SET	Mt. Juliet, TN
2312898-002K R6SOUTH-20231214 L1689671-02	2 GW		Collected by	Collected date/time 12/14/23 14:45	Received dat 12/19/23 09:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 3500Cr C-2011	WG2192881	1	12/27/23 03:01	12/27/23 03:01	SET	Mt. Juliet, TN

Ср

Tc


SDG: L1689671 DATE/TIME: 12/27/23 10:29

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

V How Kins

John Hawkins Project Manager

SDG: L1689671 DATE/TIME: 12/27/23 10:29

PAGE:

4 of 10

SAMPLE RESULTS - 01

Wet Chemistry by Method 3500Cr C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	 Ср
Analyte	mg/l		mg/l		date / time		2
Hexavalent Chromium	ND		0.000500	1	12/27/2023 02:50	WG2192881	Tc

SAMPLE RESULTS - 02

Wet Chemistry by Method 3500Cr C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	 Ср
Analyte	mg/l		mg/l		date / time		2
Hexavalent Chromium	ND		0.000500	1	12/27/2023 03:01	WG2192881	Tc

1

WG2192881

Wet Chemistry by Method 3500Cr C-2011

QUALITY CONTROL SUMMARY L1689671-01,02

Method Blank (MB)

(MB) R4016926-1 12/27/2	23 01:29			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Hexavalent Chromium	U		0.000150	0.000500

L1688418-02 Original Sample (OS) • Duplicate (DUP)

(MB) R4016926-1 12/27	/23 01:29					
	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	mg/l		mg/l	mg/l		
Hexavalent Chromium	U		0.000150	0.000500		
L1688418-02 Oriç	ginal Sample	(OS) • Dup	olicate (I	DUP)		
L1688418-02 Oriç (OS) L1688418-02 12/2	7/23 02:06 • (DUF	P) R4016926-3	12/27/23	02:17	yr DUP RPD	
(OS) L1688418-02 12/2	7/23 02:06 • (DUF Original Result	P) R4016926-3 DUP Result	12/27/23	D2:17 DUP RPD <u>DUP Qual</u>	Limits	
L1688418-02 Oriç (OS) L1688418-02 12/2: Analyte	7/23 02:06 • (DUF	P) R4016926-3	12/27/23	02:17		
(OS) L1688418-02 12/2	7/23 02:06 • (DUF Original Result	P) R4016926-3 DUP Result	12/27/23	D2:17 DUP RPD <u>DUP Qual</u>	Limits	

L1691175-01 Original Sample (OS) • Duplicate (DUP)

L1691175-01 Origi	nal Sample (OS) • Dupl	licate (D	UP)			⁷ Gl
(OS) L1691175-01 12/27/	23 04:51 • (DUP)	R4016926-5 1	2/27/23 0	5:02			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁸ Al
Analyte	mg/l	mg/l		%		%	
Hexavalent Chromium	ND	ND	1	0.000		20	°Sc

Laboratory Control Sample (LCS)

(LCS) R4016926-2 12/27/	/23 01:40				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Hexavalent Chromium	0.00200	0.00201	101	90.0-110	

L1689942-01 Original Sample (OS) • Matrix Spike (MS)

(OS) L1689942-01 12/27/2	S) L1689942-01 12/27/23 03:12 • (MS) R4016926-4 12/27/23 03:23											
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier					
Analyte	mg/l	mg/l	mg/l	%		%						
Hexavalent Chromium	0.0500	ND	0.0454	90.8	1	90.0-110						

L1691177-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1691177-01 12/27/	23 05:35 • (MS) R	4016926-6 12/	27/23 06:07	• (MSD) R40169	26-7 12/27/2	23 06:18							
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	
Hexavalent Chromium	0.0500	ND	0.0465	0.0463	92.9	92.6	1	90.0-110			0.328	20	
													Page 35 of 103
	ACCOUNT:			PRC	JECT:			SDG:		DATE	TIME:		PAGE:
Hall Environr	mental Analysis Labo	oratory					L1	689671		12/27/2	3 10:29		7 of 10

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

The remainder of this page intentionally left blank, there are no qualifiers applied to this SDG.

SDG: L1689671 Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	AI30792	Tennessee ^{1 4}	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA–Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

SDG: L1689671 Τс

Ss

Cn

Sr

Qc

Gl

AI

Sc

eurofins 😵

Environment Testing

CHAIN OF CUSTODY RECORD 1

OF: 1

Eurofins Environment Testing South Central, LLC 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

SUB CO	NTRATOR Pace	TN COMPANY:	PACE TN		PHONE:	(800) 767-5859	FAX: (61	5) 758-5859
ADDRE	^{SS:} 12065	Lebanon Rd			ACCOUNT #:		EMAIL.	A120
CITY, S	TATE, ZIP: Mt. Ju	uliet, TN 37122						
ITEM	SAMPLE	CLIENT SAMPLE ID	BOTTLE TYPE	MATRIX	COLLECTION DATE	# CONTAINERS	ANALYTICAL C	UL689671 OMMENTS
1	2312898-001K	R6 North-20231213	120mL	Aqueous	12/13/2023 12:00:00 PM	1 Cr6		-01
2	2312898-002K	R6South-20231214	120mL	Aqueous	12/14/2023 2:45:00 PM	1 Cr6		-02

COC Seal Present/Intact: COC Signed/Accurate: Bottles arrive intact: Correct bottles used: Sufficient volume sent: RA Screen <0.5 mR/hr:	NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	VOA	If Applicable Zero meadspace: Correct/Check:	_Y_N _Y_N
---	--	-----	--	--------------

SPECIAL INSTRUCTIONS / COMMENTS:

Include the LAB ID and CLIENT SAMPLE ID on final reports. Email results to Hall.Lab@et.eurofinsus.com. For Questions email Hall.samplecontrol@et.eurofinsus.com. Please return all coolers and blue ice. Thank you.

Relinquished By:	Date: 12/15/2023	Time: 8:45 AM	Received By:	Date:	Time:	REPORT TRANSMITTAL DESIRED:
Relinquished By:	Date:	Time:	Received By	Date:	Time:	HARDCOPY (extra cost) FAX EMAIL ONLINE
Relinquished By:	Date:	Time:	Received By A Holy	Pate: 19-77	Time: Q3 DD	FOR LAB USE ONLY M3 AB 2. 7 40 2 2. 4 Temp of samples Attempt to Cool?
TAT: Stand	dard 🔯	RUSH	Next BD 2nd BD] 3rd Bl		6643 4704 9561
		82				Page 38 of 103

ANALYTICAL REPORT

PREPARED FOR

5 6 7

Attn: Data Submittal EET South Central Hall Environmental Analysis Laboratory 4901 Hawkins NE Suite D Albuquerque, New Mexico 87109 Generated 1/18/2024 3:40:00 PM

JOB DESCRIPTION

2312898 2312898

JOB NUMBER

160-52632-1

Eurofins St. Louis 13715 Rider Trail North Earth City MO 63045

Eurofins St. Louis

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins TestAmerica Project Manager.

Authorization

Suitral)orden

Generated 1/18/2024 3:40:00 PM

Authorized for release by Erika Jordan, Project Manager <u>erika.jordan@et.eurofinsus.com</u> (314)298-8566

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Chain of Custody	6
Receipt Checklists	7
Definitions/Glossary	8
Method Summary	9
Sample Summary	10
Client Sample Results	11
QC Sample Results	12
QC Association Summary	13

Job ID: 160-52632-1

Eurofins St. Louis

Job ID: 160-52632-1

CASE NARRATIVE

Client: Hall Environmental Analysis Laboratory

Project: 2312898

Report Number: 160-52632-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition, all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method.

Eurofins Environment Testing attests to the validity of the laboratory data generated by Eurofins facilities reported herein. All analyses performed by Eurofins Environment Testing facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the application methods. Eurofins Environment Testing's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report.

Calculations are performed before rounding to avoid round-off errors in calculated results.

Proper preservation was noted for the methods performed on these samples, unless otherwise detailed below.

Any minimum detectable concentration (MDC), critical value (DLC), or Safe Drinking Water Act detection limit (SDWA DL) is sample-specific unless otherwise stated elsewhere in this narrative.

Radiochemistry sample results are reported with the count date/time applied as the Activity Reference Date.

The matrix for the Method Blank and LCS/LCSD is as close to the samples as can be reasonably achieved. Detailed information can be found in the most current revision of the associated SOP.

The method blank (MB) z-score is within limits, unless stated otherwise below.

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.

Reference the chain of custody and receipt report for any variations on receipt conditions.

This laboratory report is confidential and is intended for the sole use of Eurofins TestAmerica and its client.

Receipt

The samples were received on 12/19/2023 9:30 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved. The temperature of the cooler at receipt time was 5.6°C

Method 200.8 - Metals (ICP/MS)

Samples 2312898-001M/ R6 North-20231213 (52632-1) and 2312898-002M/ R6 South-20231214 (52632-2) were analyzed for Metals (ICP/MS). The samples were prepared on 12/20/2023 and analyzed on 12/21/2023.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Method 900.0 - Gross Alpha and Gross Beta Radioactivity

Samples 2312898-001M/ R6 North-20231213 (52632-1) and 2312898-002M/ R6 South-20231214 (52632-2) were analyzed for Gross Alpha and Gross Beta Radioactivity. The samples were prepared on 12/21/2023 and analyzed on 1/12/2024.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Method Gross Alpha Adj - Gross Alpha Adjusted

Client: EET South Central Hall Environmental Analysis Laboratory Project: 2312898

Eurofins St. Louis

Job ID: 160-52632-1 (Continued)

Samples 2312898-001M/ R6 North-20231213 (52632-1) and 2312898-002M/ R6 South-20231214 (52632-2) were analyzed for Gross Alpha Adjusted. The samples were prepared on 12/20/2023 and analyzed on 12/21/2023 and 1/12/2024.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Eurofins St. Louis

Environment Testing

CHAIN OF CUSTODY RECORD

PAGE: OF: 1 1

Eurofins Environment Testing South Central, LLC 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

4

SUBCO	INTRATOR Eurof	ins St. Louis COMPANY	Eurofins TestAme	rica	PHONE	(314) 298-8566	FAX	(314) 298-8757
ADDRE	^{SS} 13715	Rider Trail North			ACCOUNT #		EMAIL	
CITY, S	Earth	City, MO 63045						
ITEM	SAMPLE	CLIENT SAMPLE ID	BOTTLE TYPE	MATRIX	COLLECTION DATE	# CONTAINERS	ANALYTICAL	COMMENTS
1	2312898-001M	R6 North-20231213	1LHDPEHNO	Aqueous	12/13/2023 12:00:00 PM	2 Adjusted Gross Alph	a -Pease Apply ICO Pric	ing-
2	2312898-002M	R6South-20231214	1LHDPEHNO	Aqueous	12/14/2023 2:45:00 PM	2 Adjusted Gross Alph	a -Pease Apply ICO Pric	ing-

SPECIAL INSTRUCTIONS / COMMENTS:

Include the LAB ID and CLIENT SAMPLE ID on final reports. Email results to Hall.Lab@et.eurofinsus.com. For Questions email Hall.samplecontrol@et.eurofinsus.com. Please return all coolers and blue ice. Thank you.

Relinquished By	Date. 12/15/2023	Time: 2:49 PM	Received By The	Date 119123	Time O950	REPORT TRANSMITTAL DESIRED:
Relinquished By	Date	Time	Received By	Date	Time	HARDCOPY (extra cost)
Relinquished By	Date	Тите	Received By	Date	Time	FOR LAB USE ONLY
				1		Temp of samples C Attempt to Cool?
TAT:	Standard 🗌	RUSH	Next BD 🗌 2nd BD 🗌] 3rd B	D []	Comments

Login Sample Receipt Checklist

Client: EET South Central Hall Environmental Analysis Laboratory

Login Number: 52632 List Number: 1 Creator: Thornley, Richard W

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 160-52632-1 SDG Number: 2312898

List Source: Eurofins St. Louis

Definitions/Glossary

Client: EET South Central Hall Environmental Analysis Laboratory Project/Site: 2312898

Qualifier Description

Qualifiers

Rad

Qualifier

U	Result is less than the sample detection limit.
Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Method Summary

Client: EET South Central Hall Environmental Analysis Laboratory Project/Site: 2312898

Method	Method Description	Protocol	Laboratory
200.8	Metals (ICP/MS)	EPA	EET SL
0.00	Gross Alpha and Gross Beta Radioactivity	EPA	EET SL
Gross Alpha Adj	Gross Alpha Adjusted	SM	EET SL
00.7/200.8	Preparation, Metals	EPA	EET SL
Evaporation	Preparation, Evaporation	None	EET SL

Protocol References:

EPA = US Environmental Protection Agency

None = None

SM = "Standard Methods For The Examination Of Water And Wastewater"

Laboratory References:

EET SL = Eurofins St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

Sample Summary

Client: EET South Central Hall Environmental Analysis Laboratory Project/Site: 2312898 Job ID: 160-52632-1 SDG: 2312898

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
160-52632-1	2312898-001M/ R6 North-20231213	Water	12/13/23 12:00	12/19/23 09:30
160-52632-2	2312898-002M/ R6 South-20231214	Water	12/14/23 14:45	12/19/23 09:30

Client Sample Results

Client: EET South Central Hall Environmental Analysis Laboratory Project/Site: 2312898

Job ID: 160-52632-1 SDG: 2312898

ate Collected: 12/	D: 2312898	_	NO NOITIN	202312	.13					an Sample	e ID: 160-52 Matrix	
ate Received: 12/											Watrix	vvale
Method: EPA 200.	8 - Metals (I								_	_		
Analyte			ult Qualifier		RL 1.0	MDL			_ <u>D</u>	Prepared	Analyzed	Dil F
Uranium		2	2.0		1.0	0.15	ug/L			12/20/23 13:07	12/21/23 18:29	
Method: EPA 900.	0 - Gross Al	pha and (Gross Beta	Radioac	tivity							
			Count	Total								
			Uncert.	Uncert.								
Analyte	Result	Qualifier	(2σ+/-)	(2 σ+/-)	RL	N	IDC	Unit		Prepared	Analyzed	Dil F
Gross Alpha	3.56		1.67	1.72	3.00	2	2.17	pCi/L		12/21/23 09:43	01/12/24 07:28	
Method: SM Gros	s Alnha Adi	- Gross A	Inha Adius	ted								
		0.0007	Count	Total								
			Uncert.	Uncert.								
Analyte	Result	Qualifier	(2 σ+/-)	(2 σ+/-)	RL	N	IDC	Unit		Prepared	Analyzed	Dil F
			1.67	1.72	3.00		2.17	pCi/L			01/12/24 07:28	
•	2.25		1.07	1.72	5.00	-					0.1, 12,2 1 01.20	
Alpha		8-002M <mark>/</mark>	-					•	L	.ab Sample	e ID: 160-52	632 ⁻
Alpha lient Sample II	D: 2312898	8-002M/	-					•	L	ab Sample		
Alpha lient Sample II ate Collected: 12/	D: 2312898	8-002M/	-					•	L	.ab Sample	e ID: 160-52	
Alpha lient Sample II ate Collected: 12/ ate Received: 12/	D: 2312898 14/23 14:45 19/23 09:30		-						L	.ab Sample	e ID: 160-52	
Alpha lient Sample II ate Collected: 12/ ate Received: 12/ Method: EPA 200.	D: 2312898 14/23 14:45 19/23 09:30	CP/MS)	R6 South			MDL			L		e ID: 160-52 Matrix	: Wat
Alpha lient Sample II ate Collected: 12/ ate Received: 12/ Method: EPA 200. Analyte	D: 2312898 14/23 14:45 19/23 09:30	CP/MS) Res	R6 South		214	MDL	Unit			Prepared 12/20/23 13:07	e ID: 160-52 Matrix	: Wat
Alpha lient Sample II ate Collected: 12/ ate Received: 12/ Method: EPA 200. Analyte Jranium	D: 2312898 14/23 14:45 19/23 09:30 8 - Metals (I	CP/MS) Res	R6 South	<mark>-20231</mark> 2	RL 1.0		Unit			Prepared	e ID: 160-52 Matrix	: Wat
Alpha lient Sample II ate Collected: 12/ ate Received: 12/ Method: EPA 200. Analyte Jranium	D: 2312898 14/23 14:45 19/23 09:30 8 - Metals (I	CP/MS) Res	R6 South ult Qualifier 2.3 Gross Beta	-202312	RL 1.0	MDL	Unit			Prepared	e ID: 160-52 Matrix	: Wat
Alpha lient Sample II ate Collected: 12/ ate Received: 12/ Method: EPA 200. Analyte Uranium	D: 2312898 14/23 14:45 19/23 09:30 8 - Metals (I	CP/MS) Res	R6 South	-202312 Radioac	RL 1.0	MDL	Unit			Prepared	e ID: 160-52 Matrix	: Wat
Alpha lient Sample II ate Collected: 12/ ate Received: 12/ Method: EPA 200. Analyte Jranium Method: EPA 900.	D: 2312898 14/23 14:45 19/23 09:30 8 - Metals (I	CP/MS) Res	R6 South ult Qualifier 2.3 Gross Beta	-202312	RL 1.0	MDL	Unit			Prepared	e ID: 160-52 Matrix	: Wat
Alpha lient Sample II ate Collected: 12/ ate Received: 12/ Method: EPA 200. Analyte Jranium Method: EPA 900.	D: 2312898 14/23 14:45 19/23 09:30 8 - Metals (I 0 - Gross Al Result	CP/MS) Res	R6 South ult Qualifier 2.3 Gross Beta Count Uncert. (2σ+/-)	-202312 Radioac Total Uncert. (2σ+/-)	214 <u>RL</u> 1.0 tivity RL	MDL 0.15	Unit ug/L	Unit		Prepared 12/20/23 13:07 Prepared	Analyzed Analyzed 12/21/23 18:43	Dil F
Alpha lient Sample II ate Collected: 12/ ate Received: 12/ Method: EPA 200. Analyte Jranium Method: EPA 900.	D: 2312898 14/23 14:45 19/23 09:30 8 - Metals (I 0 - Gross Al	CP/MS) Res 2 pha and 0	R6 South	-202312 Radioac Total Uncert.	RL 1.0	MDL 0.15	Unit ug/L			Prepared 12/20/23 13:07 Prepared	Analyzed 12/21/23 18:43	Dil F
Alpha lient Sample II ate Collected: 12/ ate Received: 12/ Method: EPA 200. Analyte Jranium Method: EPA 900. Analyte Gross Alpha	D: 2312898 14/23 14:45 19/23 09:30 8 - Metals (I 0 - Gross Al <u>Result</u> 2.48	CP/MS) Res 2 Ipha and (Qualifier	R6 South ult Qualifier 2.3 Gross Beta Count Uncert. (2σ+/-) 1.38	-202312 Radioac Total Uncert. (2σ+/-) 1.40	214 <u>RL</u> 1.0 tivity RL	MDL 0.15	Unit ug/L	Unit		Prepared 12/20/23 13:07 Prepared	Analyzed Analyzed 12/21/23 18:43	Dil F
Alpha lient Sample II ate Collected: 12/ ate Received: 12/ Method: EPA 200. Analyte Uranium Method: EPA 900. Analyte Gross Alpha	D: 2312898 14/23 14:45 19/23 09:30 8 - Metals (I 0 - Gross Al <u>Result</u> 2.48	CP/MS) Res 2 Ipha and (Qualifier	R6 South ult Qualifier 2.3 Gross Beta Count Uncert. (2σ+/-) 1.38	-202312 Radioac Total Uncert. (2σ+/-) 1.40	214 <u>RL</u> 1.0 tivity RL	MDL 0.15	Unit ug/L	Unit		Prepared 12/20/23 13:07 Prepared	Analyzed Analyzed 12/21/23 18:43	Dil F
Alpha Elient Sample II ate Collected: 12/ ate Received: 12/ Method: EPA 200. Analyte Uranium Method: EPA 900. Analyte Gross Alpha	D: 2312898 14/23 14:45 19/23 09:30 8 - Metals (I 0 - Gross Al <u>Result</u> 2.48	CP/MS) Res 2 Ipha and (Qualifier	R6 South ult Qualifier 2.3 Gross Beta Count Uncert. (2σ+/-) 1.38	-202312 Radioac Total Uncert. (2σ+/-) 1.40 ted	214 <u>RL</u> 1.0 tivity RL	MDL 0.15	Unit ug/L	Unit		Prepared 12/20/23 13:07 Prepared	Analyzed Analyzed 12/21/23 18:43	Dil F
Adjusted Gross Alpha Client Sample II Pate Collected: 12/ Pate Received: 12/ Method: EPA 200. Analyte Uranium Method: EPA 900. Analyte Gross Alpha Method: SM Gross Analyte	D: 2312898 14/23 14:45 19/23 09:30 8 - Metals (I 0 - Gross Al <u>Result</u> 2.48 s Alpha Adj	CP/MS) Res 2 Ipha and (Qualifier	R6 South ult Qualifier 2.3 Gross Beta Count Uncert. (2σ+/-) 1.38 Ipha Adjus Count	-202312 Radioac Total Uncert. (2σ+/-) 1.40 ted Total	214 <u>RL</u> 1.0 tivity RL	MDL 0.15	Unit ug/L 1.88	Unit		Prepared 12/20/23 13:07 Prepared	Analyzed Analyzed 12/21/23 18:43	

QC Sample Results

Method: 200.8 - Metals (ICP/MS)

Lab Sample ID: MB 160-64	1644/1-A						Client S	ample ID: Meth	
Matrix: Water								Prep Type:	Total/NA
Analysis Batch: 641944								Prep Batc	h: 641644
		MB MB							
Analyte	Re	sult Qualifier		RL	MDL Unit	D	Prepare	ed Analyzed	Dil Fac
Uranium		ND		1.0	0.15 ug/L		12/20/23 1	13:07 12/21/23 18:	01 2
Lab Sample ID: LCS 160-64	41644/2-A					Clien	t Sample	ID: Lab Contro	ol Sample
Matrix: Water								Prep Type:	Total/N/
Analysis Batch: 641944								Prep Batc	h: 641644
			Spike		LCS			%Rec	
Analyte			Added		Qualifier	Unit	D %Re		
Uranium			1000	1080		ug/L	10)8 85 - 115	
Lab Sample ID: 160-52632-	-1 MS			CI	ient Sam	nple ID: 23	812898-0	01M/ R6 North-	20231213
Matrix: Water								Prep Type:	
Analysis Batch: 641944								Prep Batc	h: 641644
	Sample	Sample	Spike	MS	MS			%Rec	
Analyte		Qualifier	Added		Qualifier		D %Re		
Uranium	2.0		1000	1070		ug/L	10	07 70 - 130	
Lab Sample ID: 160-52632-	-1 MSD			CI	ient Sam	nole ID: 23	312898-0	01M/ R6 North-	20231213
Matrix: Water								Prep Type:	
Analysis Batch: 641944								Prep Batcl	
,, , , , .	Sample	Sample	Spike	MSD	MSD			%Rec	RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D %Re	ec Limits F	RPD Limi
	2.0		1000	4070		ug/L	10	70 - 130	
Uranium	2.0		1000	1070		uy/L	10	70-130	0 20
-		d Gross B			v	ug/L		70-130	0 20
/lethod: 900.0 - Gross /	Alpha and	d Gross B			у				
- Method: 900.0 - Gross A - Lab Sample ID: MB 160-64	Alpha and	d Gross B			у	ug/L		ample ID: Meth	od Blank
Method: 900.0 - Gross A Lab Sample ID: MB 160-64 Matrix: Water	Alpha and	d Gross B			у	ug/L		ample ID: Meth Prep Type:	od Blank Total/NA
- Method: 900.0 - Gross A - Lab Sample ID: MB 160-64	Alpha and		eta Rad		у	ug/L		ample ID: Meth	od Blank Total/NA
Method: 900.0 - Gross A Lab Sample ID: MB 160-64 Matrix: Water Analysis Batch: 643779	Alpha and 1799/1-A	Count	eta Rad		у	ug/L		ample ID: Meth Prep Type:	od Blank Total/NA
Method: 900.0 - Gross A Lab Sample ID: MB 160-64 Matrix: Water Analysis Batch: 643779 M	Alpha and 1799/1-А ів мв	Count Uncert.	eta Rad Total Uncert.	ioactivit	-		Client S	ample ID: Meth Prep Type: Prep Batc	od Blank Total/NA h: 641799
Method: 900.0 - Gross A Lab Sample ID: MB 160-64 Matrix: Water Analysis Batch: 643779 M Analyte Resu	Alpha and 1799/1-A IB MB III Qualifier	Count Uncert. (2σ+/-)	eta Rad Total Uncert. (2σ+/-)	ioactivit	MDC	Unit	Client S	ample ID: Meth Prep Type: Prep Batc ed Analyzed	od Blank Total/NA h: 641799 Dil Fac
Method: 900.0 - Gross A Lab Sample ID: MB 160-64 Matrix: Water Analysis Batch: 643779 M	Alpha and 1799/1-A IB MB III Qualifier	Count Uncert.	eta Rad Total Uncert.	ioactivit	-	Unit	Client S	ample ID: Meth Prep Type: Prep Batc	od Blank Total/NA h: 641799 Dil Fac
Method: 900.0 - Gross A Lab Sample ID: MB 160-64' Matrix: Water Analysis Batch: 643779 Matrix: Gross Alpha -0.0983 Lab Sample ID: LCS 160-64	Alpha and 1799/1-A IB MB III Qualifier 37 U	Count Uncert. (2σ+/-)	eta Rad Total Uncert. (2σ+/-)	ioactivit	MDC	Unit pCi/L	Client S	ed D9:43 Analyzed O1/10/24 07: Analyzed	Dil Factoria
Method: 900.0 - Gross A Lab Sample ID: MB 160-64' Matrix: Water Analysis Batch: 643779 Matrix: Gross Alpha -0.0983 Lab Sample ID: LCS 160-64 Matrix: Water	Alpha and 1799/1-A IB MB III Qualifier 37 U	Count Uncert. (2σ+/-)	eta Rad Total Uncert. (2σ+/-)	ioactivit	MDC	Unit pCi/L	Client S	ed D9:43 Analyzed 01/10/24 07: D2: Lab Contro Prep Type: Prep Batcl	Dil Factorial Sample Total/NA h: 641799 Dil Factoria Dil Sample Total/NA
Method: 900.0 - Gross A Lab Sample ID: MB 160-64' Matrix: Water Analysis Batch: 643779 Matrix: Gross Alpha -0.0983 Lab Sample ID: LCS 160-64	Alpha and 1799/1-A IB MB III Qualifier 37 U	Count Uncert. (2σ+/-)	eta Rad Total Uncert. (2σ+/-)	ioactivit	MDC	Unit pCi/L	Client S	ed D9:43 Analyzed O1/10/24 07: Analyzed	Dil Factorial Sample Total/NA h: 641799 Dil Factoria Dil Sample Total/NA
Method: 900.0 - Gross A Lab Sample ID: MB 160-64' Matrix: Water Analysis Batch: 643779 Matrix: Gross Alpha -0.0983 Lab Sample ID: LCS 160-64 Matrix: Water	Alpha and 1799/1-A IB MB ult Qualifier 37 U 41799/2-A	Count Uncert. (2σ+/-) 0.637	eta Rad Total Uncert. (2σ+/-) 0.637	ioactivit	MDC	Unit pCi/L	Client S	ed D9:43 Analyzed 01/10/24 07: Prep Batcl 01/10/24 07: Prep Type: Prep Batcl	Dil Fac Dil Sample Total/NA bi Sample
Method: 900.0 - Gross A Lab Sample ID: MB 160-64' Matrix: Water Analysis Batch: 643779 Matrix: Gross Alpha -0.0983 Lab Sample ID: LCS 160-64 Matrix: Water	Alpha and 1799/1-A IB MB III Qualifier 37 U	Count Uncert. (2σ+/-) 0.637	eta Rad Total Uncert. (2σ+/-) 0.637	ioactivit	MDC	Unit pCi/L	Client S Prepare 12/21/23 (t Sample	ed D9:43 Analyzed 01/10/24 07: D2: Lab Contro Prep Type: Prep Batcl	Dil Fac Dil Sample Total/NA bi Sample

QC Association Summary

Client: EET South Central Hall Environmental Analysis Laboratory Project/Site: 2312898

2312898-001M/ R6 North-20231213

2312898-001M/ R6 North-20231213

Job ID: 160-52632-1 SDG: 2312898

Metals

Prep Batch: 641644

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
160-52632-1	2312898-001M/ R6 North-20231213	Total/NA	Water	200.7/200.8	
160-52632-2	2312898-002M/ R6 South-20231214	Total/NA	Water	200.7/200.8	
MB 160-641644/1-A	Method Blank	Total/NA	Water	200.7/200.8	
LCS 160-641644/2-A	Lab Control Sample	Total/NA	Water	200.7/200.8	
160-52632-1 MS	2312898-001M/ R6 North-20231213	Total/NA	Water	200.7/200.8	
160-52632-1 MSD	2312898-001M/ R6 North-20231213	Total/NA	Water	200.7/200.8	
Analysis Batch: 641	944				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
160-52632-1	2312898-001M/ R6 North-20231213	Total/NA	Water	200.8	641644
160-52632-2	2312898-002M/ R6 South-20231214	Total/NA	Water	200.8	641644
MB 160-641644/1-A	Method Blank	Total/NA	Water	200.8	641644
LCS 160-641644/2-A	Lab Control Sample	Total/NA	Water	200.8	641644

Total/NA

Total/NA

Water

Water

200.8

200.8

Rad

Prep Batch: 641799

160-52632-1 MS

160-52632-1 MSD

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
160-52632-1	2312898-001M/ R6 North-20231213	Total/NA	Water	Evaporation	
160-52632-2	2312898-002M/ R6 South-20231214	Total/NA	Water	Evaporation	
MB 160-641799/1-A	Method Blank	Total/NA	Water	Evaporation	
LCS 160-641799/2-A	Lab Control Sample	Total/NA	Water	Evaporation	

641644

641644

11

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Reporting Alberquerque Eurofins Environment Testing South Central LLC 4901 Hawkins NE Albuquerque, New Mexico 87109 Generated 1/25/2024 10:58:43 AM

JOB DESCRIPTION

2312898

5 6

JOB NUMBER

320-108192-1

Eurofins Sacramento 880 Riverside Parkway West Sacramento CA 95605

Eurofins Sacramento

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northern California, LLC Project Manager.

Authorization

Authorized for release by Justinn Gonzales, Project Manager I Justinn.Gonzales@et.eurofinsus.com (916)374-4344

Generated

1/25/2024 10:58:43 AM

Table of Contents

Table of Contents3Definitions/Glossary4Case Narrative5Detection Summary6Client Sample Results7Surrogate Summary17Isotope Dilution Summary18QC Sample Results21QC Association Summary29Lab Chronicle30Certification Summary31Method Summary32Sample Summary33Chain of Custody34	Cover Page	1
Case Narrative5Detection Summary6Client Sample Results7Surrogate Summary17Isotope Dilution Summary18QC Sample Results21QC Association Summary29Lab Chronicle30Certification Summary31Method Summary32Sample Summary33	Table of Contents	3
Detection Summary6Client Sample Results7Surrogate Summary17Isotope Dilution Summary18QC Sample Results21QC Association Summary29Lab Chronicle30Certification Summary31Method Summary32Sample Summary33	Definitions/Glossary	4
Client Sample Results7Surrogate Summary17Isotope Dilution Summary18QC Sample Results21QC Association Summary29Lab Chronicle30Certification Summary31Method Summary32Sample Summary33	Case Narrative	5
Surrogate Summary17Isotope Dilution Summary18QC Sample Results21QC Association Summary29Lab Chronicle30Certification Summary31Method Summary32Sample Summary33	Detection Summary	6
Isotope Dilution Summary18QC Sample Results21QC Association Summary29Lab Chronicle30Certification Summary31Method Summary32Sample Summary33	Client Sample Results	7
QC Sample Results21QC Association Summary29Lab Chronicle30Certification Summary31Method Summary32Sample Summary33	Surrogate Summary	17
QC Association Summary29Lab Chronicle30Certification Summary31Method Summary32Sample Summary33	Isotope Dilution Summary	18
Lab Chronicle30Certification Summary31Method Summary32Sample Summary33	QC Sample Results	21
Certification Summary 31 Method Summary 32 Sample Summary 33	QC Association Summary	29
Method Summary 32 Sample Summary 33	Lab Chronicle	30
Sample Summary	Certification Summary	31
	Method Summary	32
Chain of Custody 34	Sample Summary	33
	Chain of Custody	34
Receipt Checklists 36	Receipt Checklists	36

Definitions/Glossary

Client: Eurofins Environment Testing South Central LLC Project/Site: 2312898

Job ID: 320-108192-1

Qualifiers

Dioxin		5
Qualifier	Qualifier Description	
*5-	Isotope dilution analyte is outside acceptance limits, low biased.	2
G	The reported quantitation limit has been raised due to an exhibited elevated noise or matrix interference	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
q	The reported result is the estimated maximum possible concentration of this analyte, quantitated using the theoretical ion ratio. The measured ion ratio does not meet qualitative identification criteria and indicates a possible interference.	

Glossary

Qualifiers		3
Dioxin		
Qualifier *5-	Qualifier Description	. 4
	Isotope dilution analyte is outside acceptance limits, low biased.	
G	The reported quantitation limit has been raised due to an exhibited elevated noise or matrix interference	5
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
q	The reported result is the estimated maximum possible concentration of this analyte, quantitated using the theoretical ion ratio. The measured ion ratio does not meet qualitative identification criteria and indicates a possible interference.	6
Glossary		7
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	ŏ
%R	Percent Recovery	
CFL	Contains Free Liquid	9
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	13
LOD	Limit of Detection (DoD/DOE)	10
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	16
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
TNTC	Too Numerous To Count	

Job ID: 320-108192-1

Eurofins Sacramento

Job Narrative 320-108192-1

Receipt

The samples were received on 12/19/2023 9:30 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 0.8° C.

Dioxin

Methods 1668A: Ion abundance ratios are outside criteria for the Isotope Dilution Analyte (IDA) associated with the following samples: 2312898-001 - R6 North-20231213 (320-108192-1) and 2312898-002 - R6South-20231214 (320-108192-2). The theoretical area for the IDA was used to quantitate recovery and target concentration.

Methods 1668A: The ion abundance ratio is outside criteria for the Internal Standard PCB-9L associated with the following sample: 2312898-002 - R6South-20231214 (320-108192-2). The theoretical area for the Internal Standard was used to quantitate the related Isotope Dilution Analytes (IDA) recoveries.

Method 1668A: The Isotope Dilution Analyte (IDA) recovery associated with the following samples is below the method recommended limit: 2312898-001 - R6 North-20231213 (320-108192-1) and 2312898-002 - R6South-20231214 (320-108192-2). Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, which is achieved for all IDA in the samples.

Method 1668A: Ion abundance ratios are outside criteria for the surrogate (SU) associated with the following samples: 2312898-002 - R6South-20231214 (320-108192-2). The theoretical area for the SU was used to quantitate recovery.

Method 1668A: The following sample exhibited elevated noise or matrix interferences for one or more analytes causing elevation of the detection limit (EDL): 2312898-002 - R6South-20231214 (320-108192-2). The reporting limit (RL) for the affected analytes has been raised to be equal to the EDL, and a "G" qualifier applied.

Method 1668A: The Isotope Dilution Analyte (IDA) recovery associated with the following sample is below the method recommended limit: 2312898-001 - R6 North-20231213 (320-108192-1). Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, which is achieved for all IDA in the sample.

Method 1668A: Ion abundance ratios are outside criteria for the Isotope Dilution Analyte (IDA) associated with the following sample: 2312898-002 - R6South-20231214 (320-108192-2). The theoretical area for the IDA was used to quantitate recovery and target concentration.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Dioxin Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Detection Summary

Client: Eurofins Environment Testing South Central LLC Project/Site: 2312898

Client Sample ID: 2312898-001 - R6 North-20231213

No Detections.

Client Sample ID: 2312898-002 - R6South-20231214

Analyte	Result	Qualifier	RL	EDL	Unit	Dil Fac D	Method	Prep Type
PCB-44	17	J –	120	2.2	pg/L		1668A	Total/NA
PCB-47	17	J	120		pg/L	1	1668A	Total/NA
PCB-49	3.8	Jq	42		pg/L	1	1668A	Total/NA
PCB-52	14	J	100		pg/L	1	1668A	Total/NA
PCB-65	17	J	120		pg/L	1	1668A	Total/NA
PCB-69	3.8	Jq	42	2.0	pg/L	1	1668A	Total/NA
PCB-85	12	Jq	62		pg/L	1	1668A	Total/NA
PCB-90	11	Jq	120		pg/L	1	1668A	Total/NA
PCB-95	12	J	100		pg/L	1	1668A	Total/NA
PCB-101	11	Jq	120		pg/L	1	1668A	Total/NA
PCB-113	11	Jq	120		pg/L	1	1668A	Total/NA
PCB-116	12	Jq	62		pg/L	1	1668A	Total/NA
PCB-117	12	Jq	62	1.2	pg/L	1	1668A	Total/NA
PCB-118	9.2	Jq	42		pg/L	1	1668A	Total/NA
PCB-129	14	Jq	62	0.99	pg/L	1	1668A	Total/NA
PCB-138	14	Jq	62	0.99	pg/L	1	1668A	Total/NA
PCB-147	14	Jq	42	1.0	pg/L	1	1668A	Total/NA
PCB-149	14	Jq	42	1.0	pg/L	1	1668A	Total/NA
PCB-153	11	J	42	0.80		1	1668A	Total/NA
PCB-160	14	Jq	21	0.99	pg/L	1	1668A	Total/NA
PCB-163	14	Jq	62	0.99	pg/L	1	1668A	Total/NA
PCB-168	11	J	42	0.80	pg/L	1	1668A	Total/NA
PCB-180	11	Jд	42	1.7	pg/L	1	1668A	Total/NA
PCB-193	11		42		pg/L	1	1668A	Total/NA

Page 6 of 36

Job ID: 320-108192-1

Lab Sample ID: 320-108192-1

Lab Sample ID: 320-108192-2

Client: Eurofins Environment Testing South Central LLC Project/Site: 2312898

Client Sample ID: 2312898-001 - R6 North-20231213 Date Collected: 12/13/23 12:00 Date Received: 12/19/23 09:30

Job	١D·	320-108192-1
000	ıD.	520-100152-1

Lab Sample ID: 320-108192-1 Matrix: Water

Method: EPA 1668A - Analyte		Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac	
PCB-1	ND		98	1.5	pg/L		01/10/24 07:52	01/19/24 18:05	1	
CB-2	ND		98	1.5	pg/L		01/10/24 07:52	01/19/24 18:05	1	
CB-3	ND		150	1.6	pg/L		01/10/24 07:52	01/19/24 18:05	1	
CB-4	ND		98	13	pg/L		01/10/24 07:52	01/19/24 18:05	1	
CB-5	ND		20	15	pg/L		01/10/24 07:52	01/19/24 18:05	1	
CB-6	ND		20	14	pg/L		01/10/24 07:52	01/19/24 18:05	1	
CB-7	ND		39	15	pg/L		01/10/24 07:52	01/19/24 18:05	1	
CB-8	ND		39		pg/L		01/10/24 07:52	01/19/24 18:05	1	
CB-9	ND		39	15	pg/L		01/10/24 07:52	01/19/24 18:05	1	
CB-10	ND		39		pg/L		01/10/24 07:52	01/19/24 18:05	1	
CB-11	ND		150		pg/L			01/19/24 18:05	1	
CB-12	ND		200		pg/L			01/19/24 18:05	1	
CB-13	ND		200		pg/L			01/19/24 18:05	1	
CB-14	ND		39		pg/L			01/19/24 18:05	1	
CB-15	ND		98		pg/L			01/19/24 18:05	1	
CB-16	ND		39		pg/L			01/19/24 18:05		
CB-17	ND		39		pg/L			01/19/24 18:05	1	
CB-18	ND		39		pg/L			01/19/24 18:05	1	
CB-19	ND		39		pg/L			01/19/24 18:05		
CB-20	ND		79		pg/L			01/19/24 18:05	1	
CB-21	ND		39		pg/L			01/19/24 18:05	1	
CB-22	ND		20		pg/L			01/19/24 18:05		
CB-23	ND		39		pg/L			01/19/24 18:05	י 1	
CB-24	ND		20		pg/L pg/L			01/19/24 18:05	1	
CB-24 CB-25	ND		20		pg/L			01/19/24 18:05		
CB-26	ND		79		pg/L			01/19/24 18:05	1	
CB-20 CB-27	ND		20		pg/L pg/L			01/19/24 18:05	1	
CB-28	ND		20 79		pg/L			01/19/24 18:05		
CB-20 CB-29	ND		79 79		pg/L pg/L			01/19/24 18:05	1	
СВ-29 СВ-30	ND		79 39		pg/L pg/L			01/19/24 18:05	1	
СВ-30 СВ-31								01/19/24 18:05	۱ ۱	
	ND		98 20		pg/L				1	
CB-32	ND		20		pg/L			01/19/24 18:05	T A	
CB-33	ND		39		pg/L			01/19/24 18:05	۲ ۲	
2CB-34 2CB-35	ND ND		20 39		pg/L			01/19/24 18:05	1	
					pg/L			01/19/24 18:05	1	
CB-36	ND		20		pg/L			01/19/24 18:05	1	
CB-37	ND		20		pg/L			01/19/24 18:05	1	
CB-38	ND		20		pg/L			01/19/24 18:05	1	
CB-39	ND		39		pg/L			01/19/24 18:05	1	
CB-40	ND		39		pg/L			01/19/24 18:05	1	
CB-41	ND		39		pg/L			01/19/24 18:05	1	
CB-42	ND		39		pg/L			01/19/24 18:05	1	
CB-43	ND		20		pg/L			01/19/24 18:05	1	
CB-44	ND		120		pg/L			01/19/24 18:05	1	
CB-45	ND		39		pg/L			01/19/24 18:05	1	
CB-46	ND		20		pg/L			01/19/24 18:05	1	
CB-47	ND		120	1.9	pg/L			01/19/24 18:05	1	
CB-48	ND		20	2.3	pg/L		01/10/24 07:52	01/19/24 18:05	1	
PCB-49	ND		39	1.8	pg/L		01/10/24 07:52	01/19/24 18:05	1	

Eurofins Sacramento

Client: Eurofins Environment Testing South Central LLC Project/Site: 2312898

Job ID: 320-108192-1

Client Sample ID: 2312898-001 - R6 North-20231213 Date Collected: 12/13/23 12:00 Date Received: 12/19/23 09:30

Lab Sample ID: 320-108192-1 Matrix: Water

: Water

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-50	ND		39	2.2	pg/L		01/10/24 07:52	01/19/24 18:05	1
PCB-51	ND		39	2.3	pg/L		01/10/24 07:52	01/19/24 18:05	1
PCB-52	ND		98	2.0	pg/L		01/10/24 07:52	01/19/24 18:05	1
PCB-53	ND		39	2.2	pg/L		01/10/24 07:52	01/19/24 18:05	1
PCB-54	ND		39		pg/L		01/10/24 07:52	01/19/24 18:05	1
PCB-55	ND		39		pg/L		01/10/24 07:52	01/19/24 18:05	1
PCB-56	ND		20		pg/L		01/10/24 07:52	01/19/24 18:05	1
PCB-57	ND		20		pg/L		01/10/24 07:52	01/19/24 18:05	1
PCB-58	ND		20	1.9	pg/L		01/10/24 07:52	01/19/24 18:05	1
PCB-59	ND		59	1.7	pg/L		01/10/24 07:52		1
PCB-60	ND		39		pg/L			01/19/24 18:05	1
PCB-61	ND		160		pg/L			01/19/24 18:05	
PCB-62	ND		59		pg/L		01/10/24 07:52		1
PCB-63	ND		39		pg/L			01/19/24 18:05	1
PCB-64	ND		39		pg/L		01/10/24 07:52		
PCB-65	ND		120		pg/L			01/19/24 18:05	1
PCB-66	ND		39		pg/L		01/10/24 07:52		1
°СВ-67	ND		20		pg/L			01/19/24 18:05	
PCB-68	ND		39		pg/L			01/19/24 18:05	1
PCB-69	ND		39		pg/L pg/L		01/10/24 07:52		1
СВ-09 РСВ-70							01/10/24 07:52		
	ND		160		pg/L				1
PCB-71	ND		39		pg/L		01/10/24 07:52		1
PCB-72	ND		20		pg/L			01/19/24 18:05	
PCB-73	ND		20		pg/L		01/10/24 07:52		1
PCB-74	ND		160		pg/L			01/19/24 18:05	1
PCB-75	ND		59		pg/L		01/10/24 07:52		1
PCB-76	ND		160		pg/L		01/10/24 07:52		1
PCB-77	ND		20		pg/L			01/19/24 18:05	1
PCB-78	ND		20		pg/L		01/10/24 07:52		1
PCB-79	ND		39		pg/L			01/19/24 18:05	1
PCB-80	ND		39		pg/L			01/19/24 18:05	1
PCB-81	ND		20		pg/L		01/10/24 07:52	01/19/24 18:05	1
PCB-82	ND		20	1.5	pg/L		01/10/24 07:52	01/19/24 18:05	1
PCB-83	ND		20	1.4	pg/L			01/19/24 18:05	1
PCB-84	ND		39	1.7	pg/L		01/10/24 07:52	01/19/24 18:05	1
PCB-85	ND		59	1.1	pg/L		01/10/24 07:52	01/19/24 18:05	1
PCB-86	ND		120	1.2	pg/L		01/10/24 07:52	01/19/24 18:05	1
PCB-87	ND		120		pg/L		01/10/24 07:52	01/19/24 18:05	1
PCB-88	ND		39	1.6	pg/L		01/10/24 07:52	01/19/24 18:05	1
PCB-89	ND		39	1.6	pg/L		01/10/24 07:52	01/19/24 18:05	1
PCB-90	ND		120	1.3	pg/L		01/10/24 07:52	01/19/24 18:05	1
PCB-91	ND		39	1.6	pg/L		01/10/24 07:52	01/19/24 18:05	1
PCB-92	ND		39	1.4	pg/L		01/10/24 07:52	01/19/24 18:05	1
PCB-93	ND		79	1.4	pg/L		01/10/24 07:52	01/19/24 18:05	1
PCB-94	ND		39		pg/L		01/10/24 07:52	01/19/24 18:05	1
PCB-95	ND		98		pg/L		01/10/24 07:52	01/19/24 18:05	1
PCB-96	ND		20	0.71			01/10/24 07:52		1
PCB-97	ND		120		pg/L			01/19/24 18:05	1
PCB-98	ND		39		pg/L			01/19/24 18:05	1

Eurofins Sacramento

RL

39

79

120

39

39

39

39

39

39

120

20

39

39

20

120

39

39

59

59

39

120

20

20

39

39

39

120

20

20

79

EDL Unit

1.4 pg/L

1.4 pg/L

1.3 pg/L

1.6

1.4

0.79 pg/L

> 1.1 pg/L

> 1.4 pg/L

0.92 pg/L

> 1.2 pg/L

> 1.2 pg/L

> 1.1 pg/L

> 1.0 pg/L

1.3 pg/L

1.2 pg/L

1.2

1.1

1.1 pg/L

1.2 pg/L

0.94 pg/L

0.99

1.3 pg/L

1.2 pg/L

1.2 pg/L

1.2 pg/L

1.2 pg/L

1.1 pg/L

1.0 pg/L

1.2 pg/L

pg/L

pg/L

pg/L

1.2 pg/L

pg/L

pg/L

D

Prepared

Client: Eurofins Environment Testing South Central LLC Project/Site: 2312898

Analyte

PCB-99

PCB-100

PCB-101

PCB-102

PCB-103

PCB-104

PCB-105

PCB-106

PCB-107

PCB-108

PCB-109

PCB-110

PCB-111

PCB-112

PCB-113

PCB-114

PCB-115

PCB-116

PCB-117

PCB-118

PCB-119

PCB-120

PCB-121

PCB-122

PCB-123

PCB-124

PCB-125

PCB-126

PCB-127

PCB-128

PCB-129 PCB-130 PCB-131 PCB-132 PCB-133 PCB-134 PCB-135 PCB-136 PCB-137 PCB-138 PCB-139 PCB-140 PCB-141 PCB-142 PCB-143 PCB-144 PCB-145 PCB-146 PCB-147

Job ID: 320-108192-1

Analyzed

Client Sample ID: 2312898-001 - R6 North-20231213 Date Collected: 12/13/23 12:00

Lab	Sample	ID:	320-108	192-1
			Matrix:	Water

01/10/24 07:52 01/19/24 18:05

01/10/24 07:52 01/19/24 18:05

01/10/24 07:52 01/19/24 18:05

01/10/24 07:52 01/19/24 18:05

01/10/24 07:52 01/19/24 18:05

01/10/24 07:52 01/19/24 18:05

01/10/24 07:52 01/19/24 18:05

01/10/24 07:52 01/19/24 18:05

01/10/24 07:52 01/19/24 18:05

01/10/24 07:52 01/19/24 18:05

01/10/24 07:52 01/19/24 18:05

01/10/24 07:52 01/19/24 18:05

01/10/24 07:52 01/19/24 18:05

01/10/24 07:52 01/19/24 18:05

01/10/24 07:52 01/19/24 18:05

01/10/24 07:52 01/19/24 18:05

01/10/24 07:52 01/19/24 18:05

01/10/24 07:52 01/19/24 18:05

01/10/24 07:52 01/19/24 18:05

01/10/24 07:52 01/19/24 18:05

01/10/24 07:52 01/19/24 18:05

01/10/24 07:52 01/19/24 18:05

01/10/24 07:52 01/19/24 18:05

01/10/24 07:52 01/19/24 18:05

01/10/24 07:52 01/19/24 18:05

01/10/24 07:52 01/19/24 18:05

01/10/24 07:52 01/19/24 18:05

01/10/24 07:52 01/19/24 18:05

01/10/24 07:52 01/19/24 18:05

01/10/24 07:52 01/19/24 18:05

6

Dil Fac

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

ND	59	1.0	pg/L	01/10/24 07:52	01/19/24 18:05	1
ND	20	1.4	pg/L	01/10/24 07:52	01/19/24 18:05	1
ND	20	1.3	pg/L	01/10/24 07:52	01/19/24 18:05	1
ND	20	1.3	pg/L	01/10/24 07:52	01/19/24 18:05	1
ND	20	1.2	pg/L	01/10/24 07:52	01/19/24 18:05	1
ND	39	1.2	pg/L	01/10/24 07:52	01/19/24 18:05	1
ND	39	1.1	pg/L	01/10/24 07:52	01/19/24 18:05	1
ND	20	0.86	pg/L	01/10/24 07:52	01/19/24 18:05	1
ND	20	0.86	pg/L	01/10/24 07:52	01/19/24 18:05	1
ND	59	1.0	pg/L	01/10/24 07:52	01/19/24 18:05	1
ND	39	1.1	pg/L	01/10/24 07:52	01/19/24 18:05	1
ND	39	1.1	pg/L	01/10/24 07:52	01/19/24 18:05	1
ND	20	1.5	pg/L	01/10/24 07:52	01/19/24 18:05	1
ND	20	1.3	pg/L	01/10/24 07:52	01/19/24 18:05	1
ND	39	1.2	pg/L	01/10/24 07:52	01/19/24 18:05	1
ND	20	1.0	pg/L	01/10/24 07:52	01/19/24 18:05	1
ND	20	0.91	pg/L	01/10/24 07:52	01/19/24 18:05	1
ND	20	0.83	pg/L	01/10/24 07:52	01/19/24 18:05	1
ND	39	1.1	pg/L	01/10/24 07:52	01/19/24 18:05	1
				I	Eurofins Sacra	amento
	Page 9 of 3	36			Page 60 of 1 1/2	03 5/2024

Date Received: 12/19/23 09:30 Method: EPA 1668A - Chlorinated Biphenyl Congeners (HRGC/HRMS) (Continued) **Result Qualifier**

ND

Client: Eurofins Environment Testing South Central LLC Project/Site: 2312898

Job ID: 320-108192-1

Client Sample ID: 2312898-001 - R6 North-20231213 Date Collected: 12/13/23 12:00 Date Received: 12/19/23 09:30

Lab Sample ID: 320-108192-1

Matrix: Water

Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
PCB-148	ND		20				01/10/24 07:52	01/19/24 18:05	1
PCB-149	ND		39		pg/L			01/19/24 18:05	1
PCB-150	ND		20	0.86	pg/L		01/10/24 07:52	01/19/24 18:05	1
PCB-151	ND		39		pg/L		01/10/24 07:52	01/19/24 18:05	1
PCB-152	ND		20	0.89	pg/L		01/10/24 07:52	01/19/24 18:05	1
PCB-153	ND		39	0.83	pg/L		01/10/24 07:52	01/19/24 18:05	1
PCB-154	ND		20	1.1	pg/L		01/10/24 07:52	01/19/24 18:05	1
PCB-155	ND		20	1.3	pg/L		01/10/24 07:52	01/19/24 18:05	1
PCB-156	ND		39	1.2	pg/L		01/10/24 07:52	01/19/24 18:05	1
PCB-157	ND		39	1.2	pg/L		01/10/24 07:52	01/19/24 18:05	1
PCB-158	ND		20	0.85	pg/L		01/10/24 07:52	01/19/24 18:05	1
PCB-159	ND		20	1.0	pg/L		01/10/24 07:52	01/19/24 18:05	1
PCB-160	ND		20	1.0	pg/L		01/10/24 07:52	01/19/24 18:05	1
CB-161	ND		20	1.1	pg/L		01/10/24 07:52	01/19/24 18:05	1
CB-162	ND		39		pg/L		01/10/24 07:52	01/19/24 18:05	1
CB-163	ND		59		pg/L		01/10/24 07:52	01/19/24 18:05	1
CB-164	ND		20		pg/L		01/10/24 07:52	01/19/24 18:05	1
CB-165	ND		20		pg/L			01/19/24 18:05	1
CB-166	ND		79		pg/L		01/10/24 07:52	01/19/24 18:05	1
CB-167	ND		39		pg/L			01/19/24 18:05	1
CB-168	ND		39		pg/L			01/19/24 18:05	1
CB-169	ND		20		pg/L			01/19/24 18:05	
CB-170	ND		39		pg/L			01/19/24 18:05	1
CB-171	ND		39		pg/L			01/19/24 18:05	1
CB-172	ND		20		pg/L			01/19/24 18:05	
CB-173	ND		39		pg/L			01/19/24 18:05	1
CB-173	ND		20		pg/L			01/19/24 18:05	1
CB-174 CB-175	ND		20		pg/L			01/19/24 18:05	
CB-175	ND		20		pg/L			01/19/24 18:05	1
CB-170 CB-177	ND		20					01/19/24 18:05	1
CB-177 CB-178					pg/L				
CB-178 CB-179	ND		20		pg/L			01/19/24 18:05	1
	ND		20		pg/L			01/19/24 18:05	1
CB-180	ND		39		pg/L			01/19/24 18:05	1
CB-181	ND		20		pg/L			01/19/24 18:05	1
CB-182	ND		20		pg/L			01/19/24 18:05	1
CB-183	ND		20		pg/L			01/19/24 18:05	1
CB-184	ND		20		pg/L			01/19/24 18:05	1
CB-185	ND		39		pg/L			01/19/24 18:05	1
CB-186	ND		20		pg/L			01/19/24 18:05	1
CB-187	ND		20	1.5	pg/L			01/19/24 18:05	1
CB-188	ND		20		pg/L			01/19/24 18:05	1
CB-189	ND		20	1.7	pg/L		01/10/24 07:52	01/19/24 18:05	1
CB-190	ND		20		pg/L			01/19/24 18:05	1
CB-191	ND		39	2.1	pg/L		01/10/24 07:52	01/19/24 18:05	1
CB-192	ND		20	2.0	pg/L		01/10/24 07:52	01/19/24 18:05	1
CB-193	ND		39	2.4	pg/L		01/10/24 07:52	01/19/24 18:05	1
CB-194	ND		39	2.5	pg/L		01/10/24 07:52	01/19/24 18:05	1
CB-195	ND		20		pg/L		01/10/24 07:52	01/19/24 18:05	1
PCB-196	ND		20		pg/L		01/10/24 07:52	01/19/24 18:05	1

Eurofins Sacramento

Client: Eurofins Environment Testing South Central LLC Project/Site: 2312898

Job ID: 320-108192-1

Client Sample ID: 2312898-001 - R6 North-20231213 Date Collected: 12/13/23 12:00 Date Received: 12/19/23 09:30

Lab Sample ID: 320-108192-1 Matrix: Water

vvaler

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-197	ND		20	1.3	pg/L		01/10/24 07:52	01/19/24 18:05	1
PCB-198	ND		39	1.9	pg/L		01/10/24 07:52	01/19/24 18:05	1
PCB-199	ND		39	1.9	pg/L		01/10/24 07:52	01/19/24 18:05	1
PCB-200	ND		20	2.2	pg/L		01/10/24 07:52	01/19/24 18:05	1
PCB-201	ND		20	1.6	pg/L		01/10/24 07:52	01/19/24 18:05	1
PCB-202	ND		20	1.6	pg/L		01/10/24 07:52	01/19/24 18:05	1
PCB-203	ND		20		pg/L		01/10/24 07:52	01/19/24 18:05	1
PCB-204	ND		20		pg/L		01/10/24 07:52	01/19/24 18:05	1
PCB-205	ND		20		pg/L		01/10/24 07:52	01/19/24 18:05	1
PCB-206	ND		39		pg/L		01/10/24 07:52	01/19/24 18:05	1
PCB-207	ND		20		pg/L		01/10/24 07:52	01/19/24 18:05	1
PCB-208	ND		20		pg/L			01/19/24 18:05	
PCB-209	ND		39		pg/L			01/19/24 18:05	1
		Qualifian			1.5				
sotope Dilution PCB-1L	%Recovery	Qualifier	Limits 15 - 150				Prepared	Analyzed 01/19/24 18:05	Dil Fac
PCB-3L									-
	51		15 - 150					01/19/24 18:05	1
PCB-4L	42		25 - 150					01/19/24 18:05	1
PCB-15L	48		25 - 150					01/19/24 18:05	1
PCB-19L	45		25 - 150					01/19/24 18:05	1
PCB-37L	55		25 - 150					01/19/24 18:05	1
PCB-54L	29		25 - 150					01/19/24 18:05	1
PCB-77L	55		25 - 150					01/19/24 18:05	1
PCB-81L	53		25 - 150				01/10/24 07:52	01/19/24 18:05	1
PCB-104L	31		25 - 150				01/10/24 07:52	01/19/24 18:05	1
PCB-105L	55		25 - 150				01/10/24 07:52	01/19/24 18:05	1
PCB-114L	56		25 - 150				01/10/24 07:52	01/19/24 18:05	1
PCB-118L	55		25 - 150				01/10/24 07:52	01/19/24 18:05	1
PCB-123L	57		25 - 150				01/10/24 07:52	01/19/24 18:05	1
PCB-126L	56		25 - 150				01/10/24 07:52	01/19/24 18:05	1
PCB-155L	50		25 - 150				01/10/24 07:52	01/19/24 18:05	1
PCB-156L	99		25 - 150				01/10/24 07:52	01/19/24 18:05	1
PCB-156L/157L	99		25 - 150				01/10/24 07:52	01/19/24 18:05	1
PCB-157L	99		25 - 150				01/10/24 07:52	01/19/24 18:05	1
PCB-167L	98		25 - 150				01/10/24 07:52	01/19/24 18:05	1
PCB-169L	103		25 - 150				01/10/24 07:52	01/19/24 18:05	1
PCB-188L	24	*5-	25 - 150				01/10/24 07:52	01/19/24 18:05	1
PCB-189L	54		25 - 150				01/10/24 07:52	01/19/24 18:05	1
PCB-202L	43		25 - 150				01/10/24 07:52	01/19/24 18:05	1
PCB-205L	66		25 - 150				01/10/24 07:52	01/19/24 18:05	1
PCB-206L	60		25 - 150					01/19/24 18:05	1
PCB-208L	54		25 - 150					01/19/24 18:05	1
PCB-209L	46		25 - 150					01/19/24 18:05	
									,
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
PCB-28L	79		30 - 135				01/10/24 07:52	01/19/24 18:05	1
PCB-111L	86		30 - 135				01/10/24 07:52	01/19/24 18:05	1
PCB-178L	67		30 - 135				01/10/24 07:52	01/19/24 18:05	1

Client: Eurofins Environment Testing South Central LLC Project/Site: 2312898

Client Sample ID: 2312898-002 - R6South-20231214

Job ID: 320-108192-1

Lab Sample ID: 320-108192-2 Matrix: Water

Date Collected: 12/14/23 14:45 Date Received: 12/19/23 09:30

Analyte	- Chlorinated Biphen Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac	
PCB-1	ND		100	1.3	pg/L		01/10/24 07:52	01/19/24 19:07	1	
PCB-2	ND		100	1.3	pg/L		01/10/24 07:52	01/19/24 19:07	1	
PCB-3	ND		160	1.4	pg/L		01/10/24 07:52	01/19/24 19:07	1	
PCB-4	ND		100	9.5	pg/L		01/10/24 07:52	01/19/24 19:07	1	
PCB-5	ND	G	22		pg/L		01/10/24 07:52	01/19/24 19:07	1	
PCB-6	ND		21	20	pg/L		01/10/24 07:52	01/19/24 19:07	1	
PCB-7	ND		42	22	pg/L		01/10/24 07:52	01/19/24 19:07	1	
PCB-8	ND		42		pg/L		01/10/24 07:52	01/19/24 19:07	1	
PCB-9	ND		42		pg/L		01/10/24 07:52	01/19/24 19:07	1	
PCB-10	ND		42		pg/L		01/10/24 07:52	01/19/24 19:07	1	
PCB-11	ND		160		pg/L		01/10/24 07:52	01/19/24 19:07	1	
PCB-12	ND		210		pg/L		01/10/24 07:52	01/19/24 19:07	1	
PCB-13	ND		210		pg/L			01/19/24 19:07	1	
PCB-14	ND		42		pg/L			01/19/24 19:07	1	
PCB-15	ND		100		pg/L			01/19/24 19:07	. 1	
PCB-16	ND		42		pg/L			01/19/24 19:07		
PCB-17	ND		42		pg/L			01/19/24 19:07	1	
°CB-18	ND		42		pg/L			01/19/24 19:07	1	
°CB-19	ND		42		pg/L			01/19/24 19:07		
CB-19 CB-20	ND		83		pg/L pg/L			01/19/24 19:07	1	
CB-20 CB-21	ND		42		pg/∟ pg/L			01/19/24 19:07	1	
CB-21	ND		21		pg/L pg/L			01/19/24 19:07		
CB-22 CB-23	ND		42		pg/∟ pg/L			01/19/24 19:07	1	
CB-23 CB-24	ND		42 21		pg/∟ pg/L			01/19/24 19:07	1	
СВ-24 СВ-25	ND		21		pg/∟ pg/L			01/19/24 19:07	1	1
СВ-25 РСВ-26	ND		83		pg/∟ pg/L			01/19/24 19:07	1	
РСВ-20 РСВ-27	ND		03 21		pg/∟ pg/L			01/19/24 19:07	1	
2СВ-27 РСВ-28								01/19/24 19:07	ا ۸	
PCB-28 PCB-29	ND		83		pg/L				1	
PCB-29 PCB-30	ND		83		pg/L			01/19/24 19:07	1	
	ND		42		pg/L			01/19/24 19:07		
PCB-31	ND		100		pg/L			01/19/24 19:07	1	
PCB-32	ND		21		pg/L			01/19/24 19:07	1	
PCB-33	ND		42		pg/L			01/19/24 19:07	1	
PCB-34	ND		21		pg/L			01/19/24 19:07	1	
PCB-35	ND		42		pg/L			01/19/24 19:07	1	
PCB-36	ND		21		pg/L			01/19/24 19:07	1	
PCB-37	ND		21		pg/L			01/19/24 19:07	1	
PCB-38	ND		21		pg/L			01/19/24 19:07	1	
CB-39	ND		42		pg/L			01/19/24 19:07	1	
CB-40	ND		42		pg/L			01/19/24 19:07	1	
CB-41	ND		42		pg/L			01/19/24 19:07	1	
CB-42	ND		42		pg/L			01/19/24 19:07	1	
PCB-43	ND		21		pg/L			01/19/24 19:07	1	
PCB-44	17	J	120		pg/L			01/19/24 19:07	1	
PCB-45	ND		42		pg/L			01/19/24 19:07	1	
PCB-46	ND		21		pg/L		01/10/24 07:52	01/19/24 19:07	1	
PCB-47	17	J	120	2.2	pg/L		01/10/24 07:52	01/19/24 19:07	1	
PCB-48	ND		21	2.6	pg/L		01/10/24 07:52	01/19/24 19:07	1	
PCB-49	3.8	Jq	42	2.0	pg/L		01/10/24 07:52	01/19/24 19:07	1	

Eurofins Sacramento

Client: Eurofins Environment Testing South Central LLC Project/Site: 2312898

Lab Sample ID: 320-108192-2

Client Sample ID: 2312898-002 - R6South-20231214 Date Collected: 12/14/23 14:45 Date Received: 12/19/23 09:30

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-50	ND		42	2.5	pg/L		01/10/24 07:52	01/19/24 19:07	1
PCB-51	ND		42	2.5	pg/L		01/10/24 07:52	01/19/24 19:07	1
PCB-52	14	J	100	2.3	pg/L		01/10/24 07:52	01/19/24 19:07	1
PCB-53	ND		42	2.5	pg/L		01/10/24 07:52	01/19/24 19:07	1
PCB-54	ND		42	1.4			01/10/24 07:52	01/19/24 19:07	1
PCB-55	ND		42	1.7	pg/L		01/10/24 07:52	01/19/24 19:07	1
PCB-56	ND		21	1.9	pg/L		01/10/24 07:52	01/19/24 19:07	1
PCB-57	ND		21	2.1	pg/L		01/10/24 07:52	01/19/24 19:07	1
PCB-58	ND		21	1.8	pg/L		01/10/24 07:52	01/19/24 19:07	1
PCB-59	ND		62	1.9	pg/L		01/10/24 07:52	01/19/24 19:07	1
PCB-60	ND		42	2.1	pg/L		01/10/24 07:52	01/19/24 19:07	1
PCB-61	ND		170	1.9	pg/L			01/19/24 19:07	
PCB-62	ND		62	1.9	pg/L			01/19/24 19:07	1
PCB-63	ND		42	2.1	pg/L			01/19/24 19:07	1
PCB-64	ND		42	1.9	pg/∟ pg/L			01/19/24 19:07	1
PCB-65	17		120	2.2	pg/∟ pg/L			01/19/24 19:07	1
PCB-66	ND	0	42	1.8				01/19/24 19:07	1
СВ-67 РСВ-67	ND		21	1.0				01/19/24 19:07	· · · · · · · 1
PCB-68	ND		42					01/19/24 19:07	1
		1	42	2.0	pg/L			01/19/24 19:07	1
CB-69		Jq			pg/L				
CB-70	ND		170		pg/L			01/19/24 19:07	1
CB-71	ND		42		pg/L			01/19/24 19:07	1
PCB-72	ND		21		pg/L			01/19/24 19:07	1
CB-73	ND		21		pg/L			01/19/24 19:07	1
PCB-74	ND		170		pg/L			01/19/24 19:07	1
PCB-75	ND		62		pg/L			01/19/24 19:07	
PCB-76	ND		170	1.9				01/19/24 19:07	1
PCB-77	ND		21	2.1				01/19/24 19:07	1
PCB-78	ND		21	2.1				01/19/24 19:07	1
PCB-79	ND		42	1.8			01/10/24 07:52	01/19/24 19:07	1
PCB-80	ND		42	1.7	10		01/10/24 07:52	01/19/24 19:07	1
PCB-81	ND		21	2.2	pg/L		01/10/24 07:52	01/19/24 19:07	1
PCB-82	ND		21	1.7	10		01/10/24 07:52	01/19/24 19:07	1
CB-83	ND		21	1.5	pg/L		01/10/24 07:52	01/19/24 19:07	1
PCB-84	ND		42	1.9	pg/L		01/10/24 07:52	01/19/24 19:07	1
CB-85	12	Jq	62	1.2	pg/L		01/10/24 07:52	01/19/24 19:07	1
PCB-86	ND		120	1.4	pg/L		01/10/24 07:52	01/19/24 19:07	1
PCB-87	ND		120	1.4	pg/L		01/10/24 07:52	01/19/24 19:07	1
CB-88	ND		42	1.7	pg/L		01/10/24 07:52	01/19/24 19:07	1
PCB-89	ND		42	1.8	pg/L		01/10/24 07:52	01/19/24 19:07	1
CB-90	11	Jq	120	1.5	pg/L		01/10/24 07:52	01/19/24 19:07	1
PCB-91	ND		42		pg/L		01/10/24 07:52	01/19/24 19:07	1
PCB-92	ND		42		pg/L			01/19/24 19:07	1
PCB-93	ND		83		pg/L			01/19/24 19:07	1
°CB-94	ND		42		pg/L			01/19/24 19:07	
°CB-95	12	л	100		pg/L			01/19/24 19:07	1
CB-96	ND	U C	21		pg/L			01/19/24 19:07	1
СВ-90 РСВ-97								01/19/24 19:07	' 1
РСВ-98	ND ND		120 42		pg/L pg/L			01/19/24 19:07	1

Eurofins Sacramento

Matrix: Water

5

6

Client: Eurofins Environment Testing South Central LLC Project/Site: 2312898

Job ID: 320-108192-1

Lab Sample ID: 320-108192-2

Client Sample ID: 2312898-002 - R6South-20231214 Date Collected: 12/14/23 14:45 Date Received: 12/19/23 09:30

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-99	ND		42	1.5	pg/L		01/10/24 07:52	01/19/24 19:07	1
PCB-100	ND		83	1.6	pg/L		01/10/24 07:52	01/19/24 19:07	1
PCB-101	11	Jq	120	1.5	pg/L		01/10/24 07:52	01/19/24 19:07	1
PCB-102	ND		42	1.8	pg/L		01/10/24 07:52	01/19/24 19:07	1
PCB-103	ND		42		pg/L		01/10/24 07:52	01/19/24 19:07	1
PCB-104	ND		42		pg/L		01/10/24 07:52	01/19/24 19:07	1
PCB-105	ND		42		pg/L		01/10/24 07:52	01/19/24 19:07	1
PCB-106	ND		42		pg/L		01/10/24 07:52	01/19/24 19:07	1
PCB-107	ND		42		pg/L			01/19/24 19:07	1
2CB-108	ND		120		pg/L			01/19/24 19:07	1
°CB-109	ND		21		pg/L			01/19/24 19:07	
2CB-110	ND		42		pg/L			01/19/24 19:07	1
CB-111	ND		42		pg/L			01/19/24 19:07	1
°CB-112	ND		21		pg/L			01/19/24 19:07	
PCB-113		Jq	120		pg/L			01/19/24 19:07	1
СВ-113 РСВ-114	ND	5 Y	42		pg/L pg/L			01/19/24 19:07	1
СВ-114 РСВ-115	ND		42					01/19/24 19:07	
		1.0	42 62		pg/L				1
PCB-116		Jq			pg/L			01/19/24 19:07	
PCB-117		Jq	62		pg/L			01/19/24 19:07	1
CB-118		ЪС	42		pg/L			01/19/24 19:07	1
PCB-119	ND		120		pg/L			01/19/24 19:07	1
PCB-120	ND		21		pg/L			01/19/24 19:07	1
PCB-121	ND		21		pg/L			01/19/24 19:07	1
CB-122	ND		42		pg/L			01/19/24 19:07	1
°CB-123	ND		42		pg/L			01/19/24 19:07	1
PCB-124	ND		42		pg/L			01/19/24 19:07	1
PCB-125	ND		120		pg/L		01/10/24 07:52	01/19/24 19:07	1
PCB-126	ND		21		pg/L		01/10/24 07:52	01/19/24 19:07	1
PCB-127	ND		21		pg/L		01/10/24 07:52	01/19/24 19:07	1
PCB-128	ND		83		pg/L		01/10/24 07:52	01/19/24 19:07	1
PCB-129	14	Jq	62	0.99	pg/L		01/10/24 07:52	01/19/24 19:07	1
PCB-130	ND		21	1.4	pg/L		01/10/24 07:52	01/19/24 19:07	1
PCB-131	ND		21	1.2	pg/L		01/10/24 07:52	01/19/24 19:07	1
CB-132	ND		21	1.3	pg/L		01/10/24 07:52	01/19/24 19:07	1
PCB-133	ND		21	1.1	pg/L		01/10/24 07:52	01/19/24 19:07	1
PCB-134	ND		42	1.2	pg/L		01/10/24 07:52	01/19/24 19:07	1
PCB-135	ND		42	1.1	pg/L		01/10/24 07:52	01/19/24 19:07	1
PCB-136	ND		21	0.84	pg/L		01/10/24 07:52	01/19/24 19:07	1
PCB-137	ND		21		pg/L		01/10/24 07:52	01/19/24 19:07	1
PCB-138		Jq	62		pg/L		01/10/24 07:52	01/19/24 19:07	1
CB-139	ND		42		pg/L		01/10/24 07:52	01/19/24 19:07	1
CB-140	ND		42		pg/L			01/19/24 19:07	1
CB-141	ND		21		pg/L			01/19/24 19:07	1
CB-142	ND		21		pg/L			01/19/24 19:07	
°CB-143	ND		42		pg/L			01/19/24 19:07	1
2CB-144	ND		21		pg/L			01/19/24 19:07	1
CB-144 CB-145	ND		21					01/19/24 19:07	1
					pg/L				
PCB-146	ND	Jq	21	0.80	pg/L			01/19/24 19:07 01/19/24 19:07	1 1

Matrix: Water

Client: Eurofins Environment Testing South Central LLC Project/Site: 2312898

Job ID: 320-108192-1

Client Sample ID: 2312898-002 - R6South-20231214 Date Collected: 12/14/23 14:45 Date Received: 12/19/23 09:30

Lab Sample ID: 320-108192-2 Matrix: Water

Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
PCB-148	ND		21		pg/L		01/10/24 07:52	01/19/24 19:07	1
CB-149		Jq	42	1.0	pg/L			01/19/24 19:07	1
CB-150	ND		21		pg/L		01/10/24 07:52	01/19/24 19:07	1
CB-151	ND		42		pg/L		01/10/24 07:52	01/19/24 19:07	1
CB-152	ND		21		pg/L		01/10/24 07:52	01/19/24 19:07	1
CB-153	11	J	42	0.80	pg/L		01/10/24 07:52	01/19/24 19:07	1
CB-154	ND		21	1.0	pg/L		01/10/24 07:52	01/19/24 19:07	1
CB-155	ND		21	1.1	pg/L		01/10/24 07:52	01/19/24 19:07	1
CB-156	ND		42	1.1	pg/L		01/10/24 07:52	01/19/24 19:07	1
PCB-157	ND		42	1.1	pg/L		01/10/24 07:52	01/19/24 19:07	1
PCB-158	ND		21	0.83	pg/L		01/10/24 07:52	01/19/24 19:07	1
PCB-159	ND		21	0.93	pg/L		01/10/24 07:52	01/19/24 19:07	1
CB-160	14	Jq	21	0.99	pg/L		01/10/24 07:52	01/19/24 19:07	1
CB-161	ND		21	1.1	pg/L		01/10/24 07:52	01/19/24 19:07	1
CB-162	ND		42		pg/L		01/10/24 07:52	01/19/24 19:07	1
CB-163	14	Jq	62	0.99	pg/L		01/10/24 07:52	01/19/24 19:07	1
CB-164	ND		21		pg/L		01/10/24 07:52	01/19/24 19:07	1
CB-165	ND		21		pg/L		01/10/24 07:52	01/19/24 19:07	1
CB-166	ND		83		pg/L			01/19/24 19:07	1
CB-167	ND		42		pg/L		01/10/24 07:52	01/19/24 19:07	1
CB-168	11	J	42		pg/L		01/10/24 07:52	01/19/24 19:07	1
CB-169	ND		21		pg/L		01/10/24 07:52		1
CB-170	ND		42		pg/L			01/19/24 19:07	1
CB-171	ND		42		pg/L			01/19/24 19:07	1
CB-172	ND		21		pg/L		01/10/24 07:52		
CB-173	ND		42		pg/L			01/19/24 19:07	1
CB-174	ND		21		pg/L			01/19/24 19:07	1
CB-175	ND		21		pg/L			01/19/24 19:07	
CB-176	ND		21		pg/L			01/19/24 19:07	1
CB-170 CB-177	ND		21		pg/L pg/L			01/19/24 19:07	1
CB-177	ND		21		pg/L			01/19/24 19:07	
	ND		21						-
CB-179		L m			pg/L			01/19/24 19:07	1
CB-180		Jq	42		pg/L			01/19/24 19:07	1
CB-181	ND		21		pg/L			01/19/24 19:07	•
CB-182	ND		21		pg/L		01/10/24 07:52		1
CB-183	ND		21		pg/L		01/10/24 07:52		1
CB-184	ND		21		pg/L		01/10/24 07:52		1
CB-185	ND		42		pg/L		01/10/24 07:52		1
CB-186	ND		21		pg/L		01/10/24 07:52		1
CB-187	ND		21		pg/L		01/10/24 07:52		1
CB-188	ND		21		pg/L			01/19/24 19:07	1
CB-189	ND		21		pg/L		01/10/24 07:52		1
CB-190	ND		21		pg/L		01/10/24 07:52		1
CB-191	ND		42		pg/L		01/10/24 07:52		1
CB-192	ND		21		pg/L		01/10/24 07:52	01/19/24 19:07	1
CB-193	11	Jq	42	1.7	pg/L		01/10/24 07:52	01/19/24 19:07	1
CB-194	ND		42	1.6	pg/L		01/10/24 07:52	01/19/24 19:07	1
CB-195	ND		21	1.6	pg/L		01/10/24 07:52	01/19/24 19:07	1
PCB-196	ND		21	1.6	pg/L		01/10/24 07:52	01/19/24 19:07	1

Client: Eurofins Environment Testing South Central LLC Project/Site: 2312898

Job ID: 320-108192-1

Client Sample ID: 2312898-002 - R6South-20231214 Date Collected: 12/14/23 14:45 Date Received: 12/19/23 09:30

Lab Sample ID: 320-108192-2 Matrix: Water

itrix: water

nalyte		Qualifier	RL	EDL		D	Prepared	Analyzed	Dil Fac
PCB-197	ND		21	0.97	pg/L		01/10/24 07:52	01/19/24 19:07	1
PCB-198	ND		42	1.5	pg/L		01/10/24 07:52	01/19/24 19:07	1
PCB-199	ND		42	1.5	pg/L		01/10/24 07:52	01/19/24 19:07	1
PCB-200	ND		21	1.7	pg/L		01/10/24 07:52	01/19/24 19:07	1
PCB-201	ND		21	1.2	pg/L		01/10/24 07:52	01/19/24 19:07	1
PCB-202	ND		21	1.1	pg/L		01/10/24 07:52	01/19/24 19:07	1
PCB-203	ND		21	1.5	pg/L		01/10/24 07:52	01/19/24 19:07	1
PCB-204	ND		21	1.1	pg/L		01/10/24 07:52	01/19/24 19:07	1
PCB-205	ND		21	1.5	pg/L		01/10/24 07:52	01/19/24 19:07	1
PCB-206	ND		42	2.0	pg/L		01/10/24 07:52	01/19/24 19:07	1
PCB-207	ND		21	1.7	pg/L		01/10/24 07:52	01/19/24 19:07	1
PCB-208	ND		21	1.7	pg/L		01/10/24 07:52	01/19/24 19:07	1
PCB-209	ND		42	1.7	pg/L		01/10/24 07:52	01/19/24 19:07	1
sotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
PCB-1L	62		15 - 150				-	01/19/24 19:07	1
PCB-3L	60		15 - 150				01/10/24 07:52	01/19/24 19:07	1
PCB-4L	50		25 - 150				01/10/24 07:52	01/19/24 19:07	1
PCB-15L	55		25 - 150				01/10/24 07:52	01/19/24 19:07	1
PCB-19L	55		25 - 150				01/10/24 07:52	01/19/24 19:07	1
PCB-37L	59		25 - 150				01/10/24 07:52	01/19/24 19:07	1
PCB-54L	32	a	25 - 150					01/19/24 19:07	1
PCB-77L	58	4	25 - 150					01/19/24 19:07	1
PCB-81L	59		25 - 150					01/19/24 19:07	1
PCB-104L	33		25 - 150					01/19/24 19:07	1
PCB-105L	63		25 - 150					01/19/24 19:07	1
PCB-114L	62		25 - 150					01/19/24 19:07	1
PCB-118L	61		25 - 150					01/19/24 19:07	1
PCB-123L	63		25 - 150					01/19/24 19:07	1
PCB-126L	65		25 - 150					01/19/24 19:07	1
PCB-155L	54		25 - 150					01/19/24 19:07	
PCB-156L	94		25 - 150					01/19/24 19:07	1
PCB-156L/157L	94		25 - 150					01/19/24 19:07	1
PCB-157L	94		25 - 150					01/19/24 19:07	
PCB-167L	93		25 - 150					01/19/24 19:07	1
PCB-169L	94		25 - 150					01/19/24 19:07	1
PCB-188L	34 27		25 - 150					01/19/24 19:07	
СВ-189L	56		25 - 150					01/19/24 19:07	1
PCB-202L	49		25 - 150 25 - 150					01/19/24 19:07	1
PCB-202L			25 - 150 25 - 150					01/19/24 19:07	
	69 64							01/19/24 19:07	1
PCB-206L PCB-208L	64		25 - 150 25 - 150						1
	58		25 - 150 25 - 150					01/19/24 19:07	1
PCB-209L	53		25 - 150				01/10/24 07:52	01/19/24 19:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
PCB-28L	88		30 - 135				01/10/24 07:52	01/19/24 19:07	1
PCB-111L	96		30 - 135				01/10/24 07:52	01/19/24 19:07	1
PCB-178L	70		30 - 135				01/10/24 07:52	01/19/24 19:07	1

Surrogate Summary

Client: Eurofins Environment Testing South Central LLC Project/Site: 2312898

Job ID: 320-108192-1

Method: 1668A - Chlorinated Biphenyl Congeners (HRGC/HRMS) **Matrix: Water**

_	_	
Prep	Type:	Total/NA

			Pe	ercent Surrogate	e Recovery (Acceptance Limits)	
		PCB28L	PCB111L	PCB178L		÷
Lab Sample ID	Client Sample ID	(30-135)	(30-135)	(30-135)		
320-108192-1	2312898-001 - R6 North-202312	79	86	67		
320-108192-2	2312898-002 - R6South-20231214	88	96	70		
MB 320-732336/1-A	Method Blank	83	105	95		
Surrogate Legend						
PCB28L = PCB-28L						
PCB111L = PCB-111L						
PCB178L = PCB-178L						
		ongene	rs (HRG	C/HRMS)		
lethod: 1668A - (Chlorinated Biphenyl Co	ongene	rs (HRG	C/HRMS)	Prep Type: Total/NA	
lethod: 1668A - (ongene	•		Prep Type: Total/NA Recovery (Acceptance Limits)	
lethod: 1668A - (PCB28L	Pe			
lethod: 1668A - (latrix: Water			Pe	ercent Surrogate		
Aethod: 1668A - (latrix: Water Lab Sample ID	Chlorinated Biphenyl Co	PCB28L	Pe PCB111L	ercent Surrogate PCB178L		
-	Chlorinated Biphenyl Co	PCB28L (40-125)	Pe PCB111L (40-125)	ercent Surrogate PCB178L (40-125)		
Aethod: 1668A - (latrix: Water Lab Sample ID LCS 320-732336/2-A	Chlorinated Biphenyl Co	PCB28L (40-125) 75	Pc PCB111L (40-125) 94	ercent Surrogate PCB178L (40-125) 83		
Aethod: 1668A - (Aatrix: Water Lab Sample ID LCS 320-732336/2-A LCSD 320-732336/3-A	Chlorinated Biphenyl Co	PCB28L (40-125) 75	Pc PCB111L (40-125) 94	ercent Surrogate PCB178L (40-125) 83		
Aethod: 1668A - Aatrix: Water Lab Sample ID LCS 320-732336/2-A LCSD 320-732336/3-A Surrogate Legend	Chlorinated Biphenyl Co	PCB28L (40-125) 75	Pc PCB111L (40-125) 94	ercent Surrogate PCB178L (40-125) 83		

Isotope Dilution Summary

Client: Eurofins Environment Testing South Central LLC Project/Site: 2312898

Job ID: 320-108192-1

Prep Type: Total/NA

Method: 1668A - Chlorinated Biphenyl Congeners (HRGC/HRMS)

Matrix: Water

PCB169L = PCB-169L PCB188L = PCB-188L PCB189L = PCB-189L

			Perce	ent Isotope	Dilution Re	ecovery (Ac	ceptance L	imits)	
		PCB1L	PCB3L	PCB4L	PCB15L	PCB19L	PCB37L	PCB54L	PCB77L
Lab Sample ID	Client Sample ID	(15-150)	(15-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)
320-108192-1	2312898-001 - R6 North-202312	51	51	42	48	45	55	29	55
320-108192-2	2312898-002 - R6South-20231214	62	60	50	55	55	59	32 q	58
MB 320-732336/1-A	Method Blank	76	77	78	76	73	68	54	81
			Perce	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		PCB81L	PCB104L	PCB105L	PCB114L	PCB118L	PCB123L	PCB126L	PCB155L
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)
320-108192-1	2312898-001 - R6 North-202312	53	31	55	56	55	57	56	50
320-108192-2	2312898-002 -	59	33	63	62	61	63	65	54
	R6South-20231214								
MB 320-732336/1-A	Method Blank	79	52	89	84	85	85	95	54
			Perce	ent Isotope	Dilution Re	ecovery (Ac	ceptance L	imits)	
		PCB156L	156157L	PCB157L	PCB167L	PCB169L	PCB188L	PCB189L	PCB202L
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)
320-108192-1	2312898-001 - R6 North-202312	99	99	99	98	103	24 *5-	54	43
320-108192-2	2312898-002 -	94	94	94	93	94	27	56	49
	R6South-20231214								
MB 320-732336/1-A	Method Blank	91	91	91	83	98	41	65	52
				•	Dilution Re	covery (Ac	ceptance L	imits)	
		PCB205L		PCB208L					
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(25-150)				
320-108192-1	2312898-001 - R6 North-202312	66	60	54	46				
320-108192-2	2312898-002 - R6South-20231214	69	64	58	53				
MB 320-732336/1-A	Method Blank	85	92	71	98				
Surrogate Legend									
PCB1L = PCB-1L									
PCB3L = PCB-3L									
PCB4L = PCB-4L									
PCB15L = PCB-15L									
PCB19L = PCB-19L									
PCB37L = PCB-37L									
PCB54L = PCB-54L									
PCB77L = PCB-77L									
PCB81L = PCB-81L									
PCB104L = PCB-104L									
PCB105L = PCB-105L									
PCB114L = PCB-114L									
PCB118L = PCB-118L									
PCB123L = PCB-123L									
PCB126L = PCB-126L									
PCB155L = PCB-155L									
PCB156L = PCB-156L									
156157L = PCB-156L/157	L								
PCB157L = PCB-157L									
PCB167L = PCB-167L									

Isotope Dilution Summary

Client: Eurofins Environment Testing South Central LLC

Project/Site: 2312898

PCB202L = PCB-202L PCB205L = PCB-205L

PCB206L = PCB-206L

PCB208L = PCB-208L

PCB209L = PCB-209L

PCB189L = PCB-189L PCB202L = PCB-202L PCB205L = PCB-205L

Method: 1668A - Chlorinated Biphenyl Congeners (HRGC/HRMS)

Matrix: Water

								op .jpc.	Totalintia	
			Perc	ent Isotope	Dilution Re	ecovery (Ad	ceptance L	imits)		
		PCB1L	PCB3L	PCB4L	PCB15L	PCB19L	PCB37L	PCB54L	PCB77L	
Lab Sample ID	Client Sample ID	(15-140)	(15-140)	(30-140)	(30-140)	(30-140)	(30-140)	(30-140)	(30-140)	
LCS 320-732336/2-A	Lab Control Sample	66	67	69	66	66	65	52	77	
LCSD 320-732336/3-A	Lab Control Sample Dup	76	78	79	77	75	70	59	83	
			Perc	ent Isotope	Dilution Re	ecoverv (Ad	ceptance L	imits)		
		PCB81L					PCB123L		PCB155L	
Lab Sample ID	Client Sample ID	(30-140)	(30-140)	(30-140)	(30-140)	(30-140)	(30-140)	(30-140)	(30-140)	
LCS 320-732336/2-A	Lab Control Sample	75	51	84	81	77	79	91	51	
LCSD 320-732336/3-A	Lab Control Sample Dup	82	56	92	88	86	86	96	52	
			Perc	ent Isotone	Dilution Re	ecoverv (Ac	ceptance L	imits)		
		PCB156L	156157L				PCB188L		PCB202L	
Lab Sample ID	Client Sample ID	(30-140)	(30-140)	(30-140)	(30-140)	(30-140)	(30-140)	(30-140)	(30-140)	
LCS 320-732336/2-A	Lab Control Sample		81	81	74	91	41	66	51	I
LCSD 320-732336/3-A	Lab Control Sample Dup	85	85	85	76	93	44	66	53	
					Dilution P		ceptance L	imite)		
		PCB205L		PCB208L				iiiiito)		
Lab Sample ID	Client Sample ID	(30-140)	(30-140)	(30-140)	(30-140)					
LCS 320-732336/2-A	Lab Control Sample		94	72	103					
LCSD 320-732336/3-A	Lab Control Sample Dup	85	96	72	104					Ē
Surrogate Legend										1
PCB1L = PCB-1L										
PCB3L = PCB-3L										
PCB4L = PCB-4L										
PCB15L = PCB-15L										
PCB19L = PCB-19L										
PCB37L = PCB-37L										
PCB54L = PCB-54L										
PCB77L = PCB-77L										
PCB81L = PCB-81L										
PCB104L = PCB-104L										
PCB105L = PCB-105L PCB114L = PCB-114L										
PCB118L = PCB-118L										
PCB118L = PCB-118L PCB123L = PCB-123L										
PCB123L = PCB-123L PCB126L = PCB-126L										
PCB155L = PCB-155L										
PCB155L = PCB-155L PCB156L = PCB-156L										
156157L = PCB-156L/15	71									
PCB157L = PCB-157L										
PCB167L = PCB-167L										
PCB169L = PCB-169L										
PCB109L = PCB-109L PCB188L = PCB-188L										
1 CD 100L - FCD-100L										

Job ID: 320-108192-1

Prep Type: Total/NA

Isotope Dilution Summary

Client: Eurofins Environment Testing South Central LLC Project/Site: 2312898 PCB206L = PCB-206L PCB208L = PCB-208L PCB209L = PCB-209L

Eurofins Sacramento

Client: Eurofins Environment Testing South Central LLC Project/Site: 2312898

Method: 1668A - Chlorinated Biphenyl Congeners (HRGC/HRMS)

Lab Sample ID: MB 320-732336/1-A Matrix: Water

Analysis Batch: 733676

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 732336

	MB	MB							
Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1	ND		100	0.79	pg/L		01/10/24 07:52	01/14/24 23:52	1
PCB-2	ND		100	0.84	pg/L		01/10/24 07:52	01/14/24 23:52	1
PCB-3	ND		150	0.79	pg/L		01/10/24 07:52	01/14/24 23:52	1
PCB-4	ND		100	12	pg/L		01/10/24 07:52	01/14/24 23:52	1
PCB-5	ND		20	6.4	pg/L		01/10/24 07:52	01/14/24 23:52	1
PCB-6	ND		20	5.4	pg/L		01/10/24 07:52	01/14/24 23:52	1
PCB-7	ND		40	5.8	pg/L		01/10/24 07:52	01/14/24 23:52	1
PCB-8	ND		40		pg/L		01/10/24 07:52	01/14/24 23:52	1
PCB-9	ND		40	6.0	pg/L		01/10/24 07:52	01/14/24 23:52	1
PCB-10	ND		40	7.8	pg/L		01/10/24 07:52	01/14/24 23:52	1
PCB-11	ND		150		pg/L		01/10/24 07:52	01/14/24 23:52	1
PCB-12	ND		200		pg/L		01/10/24 07:52	01/14/24 23:52	1
PCB-13	ND		200		pg/L		01/10/24 07:52	01/14/24 23:52	1
PCB-14	ND		40	6.1	pg/L		01/10/24 07:52	01/14/24 23:52	1
PCB-15	ND		100		pg/L		01/10/24 07:52	01/14/24 23:52	1
PCB-16	ND		40		pg/L		01/10/24 07:52	01/14/24 23:52	1
PCB-17	ND		40		pg/L		01/10/24 07:52	01/14/24 23:52	1
PCB-18	ND		40		pg/L		01/10/24 07:52	01/14/24 23:52	1
PCB-19	ND		40		pg/L		01/10/24 07:52	01/14/24 23:52	1
PCB-20	ND		80	1.1	pg/L			01/14/24 23:52	1
PCB-21	ND		40	1.1	pg/L		01/10/24 07:52	01/14/24 23:52	1
PCB-22	ND		20		pg/L			01/14/24 23:52	
PCB-23	ND		40	1.1	pg/L			01/14/24 23:52	1
PCB-24	ND		20					01/14/24 23:52	1
PCB-25	ND		20		pg/L			01/14/24 23:52	1
PCB-26	ND		80					01/14/24 23:52	1
PCB-27	ND		20		pg/L			01/14/24 23:52	1
PCB-28	ND		80		pg/L			01/14/24 23:52	
PCB-29	ND		80	1.1	pg/L			01/14/24 23:52	1
PCB-30	ND		40		pg/L			01/14/24 23:52	1
PCB-31	ND		100		pg/L			01/14/24 23:52	
PCB-32	ND		20		pg/L			01/14/24 23:52	1
PCB-33	ND		40		pg/L			01/14/24 23:52	1
PCB-34	ND		20		pg/L			01/14/24 23:52	
PCB-35	ND		40					01/14/24 23:52	1
PCB-36	ND		20		pg/L			01/14/24 23:52	1
PCB-37	ND		20		pg/L			01/14/24 23:52	
PCB-38	ND		20		pg/L			01/14/24 23:52	1
PCB-39	ND		40		pg/L			01/14/24 23:52	1
PCB-40	ND		40	0.80				01/14/24 23:52	
PCB-41	ND		40		pg/L			01/14/24 23:52	1
PCB-42	ND		40	0.88				01/14/24 23:52	1
PCB-43			20		pg/L			01/14/24 23:52	1
PCB-43 PCB-44	ND ND		120		pg/L pg/L			01/14/24 23:52	1
PCB-44 PCB-45	ND		40					01/14/24 23:52	1
PCB-45 PCB-46				0.94				01/14/24 23:52	
РСБ-40 РСВ-47	ND ND		20 120	0.81	pg/L			01/14/24 23:52	1
	ND		120						1
PCB-48	ND		20	0.91	pg/L		01/10/24 07:52	01/14/24 23:52	1

15

11 12 13

Client: Eurofins Environment Testing South Central LLC Project/Site: 2312898

Method: 1668A - Chlorinated Biphenyl Congeners (HRGC/HRMS) (Continued)

Lab Sample ID: MB 320-732336/1-A Matrix: Water

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 732336

Analysis Batch: 733676

	MB								
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
PCB-49	ND		40		pg/L	C	01/10/24 07:52	01/14/24 23:52	1
PCB-50	ND		40		pg/L	C	01/10/24 07:52	01/14/24 23:52	1
PCB-51	ND		40		pg/L			01/14/24 23:52	1
PCB-52	ND		100	0.84	pg/L	C	01/10/24 07:52	01/14/24 23:52	1
PCB-53	ND		40		pg/L	C	01/10/24 07:52	01/14/24 23:52	1
PCB-54	ND		40	0.72	pg/L	C	01/10/24 07:52	01/14/24 23:52	1
PCB-55	ND		40	0.95	pg/L	C	01/10/24 07:52	01/14/24 23:52	1
PCB-56	ND		20	1.1	pg/L	C	01/10/24 07:52	01/14/24 23:52	1
PCB-57	ND		20	1.2	pg/L	C	01/10/24 07:52	01/14/24 23:52	1
PCB-58	ND		20	0.99	pg/L	C	01/10/24 07:52	01/14/24 23:52	1
PCB-59	ND		60	0.69	pg/L	C	1/10/24 07:52	01/14/24 23:52	1
PCB-60	ND		40	1.2	pg/L	C	01/10/24 07:52	01/14/24 23:52	1
PCB-61	ND		160		pg/L	C	01/10/24 07:52	01/14/24 23:52	1
PCB-62	ND		60		pg/L	C	01/10/24 07:52	01/14/24 23:52	1
PCB-63	ND		40		pg/L			01/14/24 23:52	1
PCB-64	ND		40		pg/L			01/14/24 23:52	
PCB-65	ND		120		pg/L	C	01/10/24 07:52	01/14/24 23:52	1
PCB-66	ND		40		pg/L			01/14/24 23:52	1
PCB-67	ND		20		pg/L	C	1/10/24 07:52	01/14/24 23:52	
PCB-68	ND		40		pg/L			01/14/24 23:52	1
PCB-69	ND		40		pg/L			01/14/24 23:52	1
PCB-70	ND		160		pg/L			01/14/24 23:52	
PCB-71	ND		40		pg/⊑ pg/L			01/14/24 23:52	1
PCB-72	ND		20		pg/⊑ pg/L			01/14/24 23:52	1
PCB-73	ND		20		pg/L			01/14/24 23:52	
PCB-74	ND		160		pg/L			01/14/24 23:52	1
PCB-75	ND		60		pg/∟ pg/L			01/14/24 23:52	1
PCB-76	ND		160		pg/∟ pg/L			01/14/24 23:52	
PCB-77	ND		20		pg/∟ pg/L			01/14/24 23:52	1
PCB-78									
	ND		20		pg/L			01/14/24 23:52	1
PCB-79	ND		40		pg/L			01/14/24 23:52	1
PCB-80	ND		40		pg/L			01/14/24 23:52	1
PCB-81	ND		20		pg/L			01/14/24 23:52	1
PCB-82	ND		20		pg/L			01/14/24 23:52	1
PCB-83	ND		20		pg/L			01/14/24 23:52	1
PCB-84	ND		40		pg/L			01/14/24 23:52	1
PCB-85	ND		60		pg/L			01/14/24 23:52	1
PCB-86	ND		120		pg/L			01/14/24 23:52	1
PCB-87	ND		120		pg/L	C	01/10/24 07:52	01/14/24 23:52	1
PCB-88	ND		40	1.8	pg/L	C	01/10/24 07:52	01/14/24 23:52	1
PCB-89	ND		40		pg/L	C	01/10/24 07:52	01/14/24 23:52	1
PCB-90	ND		120	1.5	pg/L	C	01/10/24 07:52	01/14/24 23:52	1
PCB-91	ND		40	1.8	pg/L	C	01/10/24 07:52	01/14/24 23:52	1
PCB-92	ND		40	1.7	pg/L	C	01/10/24 07:52	01/14/24 23:52	1
PCB-93	ND		80	1.7	pg/L	C	01/10/24 07:52	01/14/24 23:52	1
PCB-94	ND		40	2.0	pg/L	C	01/10/24 07:52	01/14/24 23:52	1
PCB-95	ND		100	1.8	pg/L	C	1/10/24 07:52	01/14/24 23:52	1
PCB-96	ND		20		pg/L	C	01/10/24 07:52	01/14/24 23:52	1
PCB-97	ND		120		pg/L	C	01/10/24 07:52	01/14/24 23:52	1

9

5

Job ID: 320-108192-1

Method: 1668A - Chlorinated Biphenyl Congeners (HRGC/HRMS) (Continued)

Lab Sample ID: MB 320-732336/1-A Matrix: Water

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 732336

Analysis Batch: 733676

	MB	МВ						riep baten.	
Analyte		Qualifier	RL	EDL		D	Prepared	Analyzed	Dil Fac
PCB-98	ND		40		pg/L		01/10/24 07:52	01/14/24 23:52	1
PCB-99	ND		40		pg/L		01/10/24 07:52	01/14/24 23:52	1
PCB-100	ND		80	1.7	pg/L		01/10/24 07:52	01/14/24 23:52	1
PCB-101	ND		120	1.5	pg/L		01/10/24 07:52	01/14/24 23:52	1
PCB-102	ND		40	1.8	pg/L		01/10/24 07:52	01/14/24 23:52	1
PCB-103	ND		40	1.6	pg/L		01/10/24 07:52	01/14/24 23:52	1
PCB-104	ND		40	0.97	pg/L		01/10/24 07:52	01/14/24 23:52	1
PCB-105	ND		40	1.3	pg/L		01/10/24 07:52	01/14/24 23:52	1
PCB-106	ND		40	1.5	pg/L		01/10/24 07:52	01/14/24 23:52	1
PCB-107	ND		40		pg/L		01/10/24 07:52	01/14/24 23:52	1
PCB-108	ND		120		pg/L		01/10/24 07:52	01/14/24 23:52	1
PCB-109	ND		20		pg/L			01/14/24 23:52	1
PCB-110	ND		40		pg/L			01/14/24 23:52	1
PCB-111	ND		40		pg/L			01/14/24 23:52	1
PCB-112	ND		20		pg/L			01/14/24 23:52	1
PCB-113	ND		120		pg/L			01/14/24 23:52	1
PCB-114	ND		40		pg/L			01/14/24 23:52	1
PCB-115	ND		40		pg/L			01/14/24 23:52	1
PCB-116	ND		40 60		pg/L			01/14/24 23:52	1
PCB-117	ND		60		pg/L pg/L			01/14/24 23:52	1
PCB-117 PCB-118	ND		40		pg/L				
								01/14/24 23:52	
PCB-119	ND		120		pg/L			01/14/24 23:52	1
PCB-120	ND		20		pg/L			01/14/24 23:52	1
PCB-121	ND		20		pg/L			01/14/24 23:52	-
PCB-122	ND		40		pg/L			01/14/24 23:52	1
PCB-123	ND		40		pg/L			01/14/24 23:52	1
PCB-124	ND		40		pg/L			01/14/24 23:52	1
PCB-125	ND		120		pg/L			01/14/24 23:52	1
PCB-126	ND		20		pg/L			01/14/24 23:52	1
PCB-127	ND		20		pg/L			01/14/24 23:52	1
PCB-128	ND		80	0.51				01/14/24 23:52	1
PCB-129	ND		60	0.52				01/14/24 23:52	1
PCB-130	ND		20	0.69				01/14/24 23:52	1
PCB-131	ND		20	0.64				01/14/24 23:52	1
PCB-132	ND		20	0.66				01/14/24 23:52	1
PCB-133	ND		20	0.62	pg/L		01/10/24 07:52	01/14/24 23:52	1
PCB-134	ND		40	0.62	pg/L		01/10/24 07:52	01/14/24 23:52	1
PCB-135	ND		40	0.57	pg/L			01/14/24 23:52	1
PCB-136	ND		20	0.42	pg/L		01/10/24 07:52	01/14/24 23:52	1
PCB-137	ND		20	0.50	pg/L		01/10/24 07:52	01/14/24 23:52	1
PCB-138	ND		60	0.52	pg/L		01/10/24 07:52	01/14/24 23:52	1
PCB-139	ND		40	0.56	pg/L		01/10/24 07:52	01/14/24 23:52	1
PCB-140	ND		40	0.56			01/10/24 07:52	01/14/24 23:52	1
PCB-141	ND		20	0.66			01/10/24 07:52	01/14/24 23:52	1
PCB-142	ND		20	0.67				01/14/24 23:52	1
PCB-143	ND		40	0.62				01/14/24 23:52	1
PCB-144	ND		20	0.53				01/14/24 23:52	1
PCB-145	ND		20	0.43				01/14/24 23:52	1
			20		pg/L			01/14/24 23:52	

Eurofins Sacramento

5

Client: Eurofins Environment Testing South Central LLC Project/Site: 2312898

Method: 1668A - Chlorinated Biphenyl Congeners (HRGC/HRMS) (Continued)

....

Lab Sample ID: MB 320-732336/1-A Matrix: Water

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 732336

Matrix: Water Analysis Batch: 733676

МВ	MB					
Analyte Result	Qualifier RL	EDL	Unit D	Prepared	Analyzed	Dil Fac
PCB-147 ND	40	0.54	pg/L	01/10/24 07:52	01/14/24 23:52	1
PCB-148 ND	20	0.55	pg/L	01/10/24 07:52	01/14/24 23:52	1
PCB-149 ND	40		pg/L	01/10/24 07:52	01/14/24 23:52	1
PCB-150 ND	20	0.41	pg/L	01/10/24 07:52	01/14/24 23:52	1
PCB-151 ND	40		pg/L	01/10/24 07:52	01/14/24 23:52	1
PCB-152 ND	20		pg/L	01/10/24 07:52	01/14/24 23:52	1
PCB-153 ND	40		pg/L	01/10/24 07:52	01/14/24 23:52	1
PCB-154 ND	20	0.51	pg/L	01/10/24 07:52	01/14/24 23:52	1
PCB-155 ND	20		pg/L	01/10/24 07:52	01/14/24 23:52	1
PCB-156 ND	40		pg/L	01/10/24 07:52	01/14/24 23:52	1
PCB-157 ND	40	0.37	pg/L		01/14/24 23:52	1
PCB-158 ND	20		pg/L		01/14/24 23:52	1
PCB-159 ND	20		pg/L		01/14/24 23:52	1
PCB-160 ND	20	0.52			01/14/24 23:52	1
PCB-161 ND	20		pg/L		01/14/24 23:52	1
PCB-162 ND	40		pg/L		01/14/24 23:52	1
PCB-163 ND	60		pg/L		01/14/24 23:52	1
PCB-164 ND	20		pg/L		01/14/24 23:52	1
PCB-165 ND	20		pg/L		01/14/24 23:52	1
PCB-166 ND	80		pg/L		01/14/24 23:52	
PCB-167 ND	40		pg/L pg/L		01/14/24 23:52	1
PCB-168 ND	40		pg/L		01/14/24 23:52	1
PCB-169 ND	20	0.44			01/14/24 23:52	
PCB-170 ND	40		pg/L pg/L		01/14/24 23:52	1
PCB-171 ND	40	0.78			01/14/24 23:52	1
PCB-172 ND	20	0.78			01/14/24 23:52	
PCB-172 ND PCB-173 ND	40	0.78			01/14/24 23:52	1
PCB-173 ND PCB-174 ND	40 20	0.78			01/14/24 23:52	1
PCB-174 ND PCB-175 ND	20		pg/∟ pg/L		01/14/24 23:52	
PCB-176 ND	20				01/14/24 23:52	1
PCB-177 ND	20	0.43	pg/L		01/14/24 23:52	1
PCB-178 ND	20		pg/∟ pg/L		01/14/24 23:52	
PCB-179 ND	20		pg/∟ pg/L		01/14/24 23:52	1
PCB-179 ND PCB-180 ND	40	0.40			01/14/24 23:52	1
PCB-180 ND	20				01/14/24 23:52	
PCB-181 ND PCB-182 ND	20	0.74	pg/L		01/14/24 23:52	1 1
PCB-183 ND	20		pg/L		01/14/24 23:52 01/14/24 23:52	1
PCB-184 ND	20	0.41				1
PCB-185 ND	40	0.83			01/14/24 23:52	1
PCB-186 ND	20	0.37			01/14/24 23:52	1
PCB-187 ND	20		pg/L		01/14/24 23:52	1
PCB-188 ND	20		pg/L		01/14/24 23:52	1
PCB-189 ND	20	0.50			01/14/24 23:52	1
PCB-190 ND	20		pg/L		01/14/24 23:52	1
PCB-191 ND	40		pg/L		01/14/24 23:52	1
PCB-192 ND	20		pg/L		01/14/24 23:52	1
PCB-193 ND	40	0.63			01/14/24 23:52	1
PCB-194 ND	40	0.49			01/14/24 23:52	1
PCB-195 ND	20	0.49	pg/L	01/10/24 07:52	01/14/24 23:52	1

Eurofins Sacramento

5

9

Client: Eurofins Environment Testing South Central LLC Project/Site: 2312898

Method: 1668A - Chlorinated Biphenyl Congeners (HRGC/HRMS) (Continued)

Lab Sample ID: MB 320-732336/1-A Matrix: Water

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 732336

Matrix: Water Analysis Batch: 733676

Analysis Batch: 733676	MB	МВ						Prep Batch:	132330
Analyte		Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-196	ND		20	0.52	pg/L		01/10/24 07:52	01/14/24 23:52	1
PCB-197	ND		20	0.31	pg/L	C	01/10/24 07:52	01/14/24 23:52	1
PCB-198	ND		40	0.47	pg/L	C	01/10/24 07:52	01/14/24 23:52	1
PCB-199	ND		40	0.47	pg/L	C	01/10/24 07:52	01/14/24 23:52	1
PCB-200	ND		20	0.50	pg/L	C	01/10/24 07:52	01/14/24 23:52	1
PCB-201	ND		20	0.40	pg/L	C	01/10/24 07:52	01/14/24 23:52	1
PCB-202	ND		20	0.38	pg/L	C	01/10/24 07:52	01/14/24 23:52	1
PCB-203	ND		20	0.46	pg/L	C	01/10/24 07:52	01/14/24 23:52	1
PCB-204	ND		20	0.38	pg/L	C	01/10/24 07:52	01/14/24 23:52	1
PCB-205	ND		20	0.44	pg/L	C	01/10/24 07:52	01/14/24 23:52	1
PCB-206	ND		40	0.83	pg/L	C	01/10/24 07:52	01/14/24 23:52	1
PCB-207	ND		20	0.66	pg/L	C	01/10/24 07:52	01/14/24 23:52	1
PCB-208	ND		20	0.72	pg/L	C	01/10/24 07:52	01/14/24 23:52	1
PCB-209	ND		40		pg/L	C	01/10/24 07:52	01/14/24 23:52	1
	MB	МВ							
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
PCB-1L	76		15 - 150			C	01/10/24 07:52	01/14/24 23:52	1
PCB-3L	77		15_150			C	01/10/24 07:52	01/14/24 23:52	1
PCB-4L	78		25 - 150			0	01/10/24 07:52	01/14/24 23:52	1
PCB-15L	76		25 - 150			(01/10/24 07:52	01/14/24 23:52	1
PCB-19L	73		25 - 150					01/14/24 23:52	1
PCB-37L	68		25 - 150			C	01/10/24 07:52	01/14/24 23:52	1
PCB-54L	54		25 - 150			(01/10/24 07:52	01/14/24 23:52	1
PCB-77L	81		25 - 150					01/14/24 23:52	1
PCB-81L	79		25 - 150					01/14/24 23:52	1
PCB-104L	52		25 - 150					01/14/24 23:52	
PCB-105L	89		25 - 150					01/14/24 23:52	1
PCB-114L	84		25 - 150					01/14/24 23:52	1
PCB-118L	85		25 - 150					01/14/24 23:52	
PCB-123L	85		25 - 150					01/14/24 23:52	1
PCB-126L	95		25 - 150					01/14/24 23:52	1
PCB-155L	54		25 - 150					01/14/24 23:52	
PCB-156L	91		25 - 150					01/14/24 23:52	1
PCB-156L/157L	91		25 - 150					01/14/24 23:52	1
PCB-157L	91		25 - 150					01/14/24 23:52	1
PCB-167L	83		25 - 150					01/14/24 23:52	1
PCB-169L	98		25 - 150					01/14/24 23:52	1
PCB-188L	41		25 - 150					01/14/24 23:52	
PCB-189L	65		25 - 150					01/14/24 23:52	1
PCB-202L	52		25 - 150					01/14/24 23:52	1
PCB-205L	85		25 - 150					01/14/24 23:52	
PCB-206L	92		25 - 150					01/14/24 23:52	1
PCB-208L	71		25 - 150					01/14/24 23:52	1
PCB-209L	98		25 - 150					01/14/24 23:52	
									-
Surrogato	MB %Recovery	MB Qualifiar	Limits				Droporod	Analyzed	Dil Fac
Surrogate PCB-28L	<u>%Recovery</u> 83	Quaiiiiei	30 - 135			7	Prepared	Analyzed 01/14/24 23:52	<u>Dii Fac</u> 1
PCB-20L PCB-111L	03 105		30 - 135 30 - 135					01/14/24 23:52	1
	105		30 - 733			Ĺ	11/10/24 01.02	01/14/24 23.02	1

5

9

Method: 1668A - Chlorinated Biphenyl Congeners (HRGC/HRMS) (Continued)

Lab Sample ID: MB 320-7	′32336/1-A						Clie	ent Sam	ple ID: Metho	
Matrix: Water									Prep Type:]	
Analysis Batch: 733676									Prep Batch:	
-		B MB								
Surrogata		ы мы ry Qualifier	Limits					ranarad	Analyzad	Dil Fa
Surrogate PCB-178L		$\frac{1}{95}$ $\frac{\text{Quanner}}{1}$	30 - 135					repared	2 Analyzed 01/14/24 23:52	
PCB-1/0L	5	0	30 - 135				01/1	0/24 07.52	2 01/14/24 23.52	<u>-</u>
Lab Sample ID: LCS 320- Matrix: Water Analysis Batch: 733676	732336/2-A		Spike	LCS	LCS	Clien	t Saı	nple ID:	Lab Control Prep Type: Prep Batch: %Rec	Fotal/N
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
PCB-1			2000	2030		pg/L		102	50 - 150	
PCB-3			2000	2000		pg/L		100	50 - 150	
PCB-4			2000	2190		pg/L		110	50 - 150	
PCB-15			2000	1960		pg/L		98	50 - 150	
PCB-19			2000	2230		pg/L		112	50 - 150	
PCB-37			2000	2090		pg/L		105	50 - 150	
PCB-54			2000	2190	q	pg/L		109	50 - 150	
PCB-77			2000	2340		pg/L		117	50 - 150	
PCB-81			2000	2600		pg/L		130	50 - 150	
PCB-104			2000	2920		pg/L		146	50 - 150	
PCB-105			2000	2360		pg/L		118	50 - 150	
PCB-114			2000	2520		pg/L		126	50 - 150	
PCB-118			2000	2390		pg/L		119	50 - 150	
PCB-123			2000	2460		pg/L		123	50 - 150	
PCB-126			2000	2540		pg/L		127	50 - 150	
PCB-155			2000	2840		pg/L		142	50 - 150	
PCB-156			4000	4670		pg/L		117	50 - 150	
PCB-157			4000	4670		pg/L		117	50 - 150	
PCB-167			2000	2400		pg/L		120	50 - 150	
PCB-169			2000	2290		pg/L		114	50 - 150	
PCB-188			2000	2380		pg/L		119	50 - 150	
PCB-189			2000	2120		pg/L		106	50 - 150	
PCB-202			2000	2440		pg/L		122	50 - 150	
PCB-205			2000	2180		pg/L		109	50 - 150	
PCB-205			2000	1990		pg/L		103	50 - 150 50 - 150	
PCB-208			2000	2220		pg/L		111	50 - 150 50 - 150	
PCB-209			2000	2180		pg/L		109	50 - 150 50 - 150	
	LCS L	cs	2000	2100		r'9' =			20 - 100	
Isotope Dilution	%Recovery Q		Limits							
PCB-1L	66		15 - 140							
PCB-3L	67		15 - 140 15 - 140							
PCB-4L	69		30 - 140							
PCB-4L PCB-15L	66		30 - 140 30 - 140							
PCB-19L	66		30 - 140 30 - 140							
PCB-19L PCB-37L	65		30 - 140 30 - 140							
PCB-57L PCB-54L	52		30 - 140 30 - 140							
PCB-34L PCB-77L	52 77		30 - 140 30 - 140							
PCB-81L	75		30 - 140							
PCB-104L	51		30 - 140							
PCB-105L	84		30 - 140							
PCB-114L	81		30 - 140							

Eurofins Sacramento

5

9

Prep Type: Total/NA

Prep Batch: 732336

Client Sample ID: Lab Control Sample

Method: 1668A - Chlorinated Biphenyl Congeners (HRGC/HRMS) (Continued)

Lab Sample ID: LCS 320-732336/2-A Matrix: Water

Analysis Batch: 733676

	LCS	LCS	
Isotope Dilution	%Recovery	Qualifier	Limits
PCB-118L	77		30 - 140
PCB-123L	79		30 - 140
PCB-126L	91		30 - 140
PCB-155L	51		30 - 140
PCB-156L	81		30 - 140
PCB-156L/157L	81		30 - 140
PCB-157L	81		30 - 140
PCB-167L	74		30 - 140
PCB-169L	91		30 - 140
PCB-188L	41		30 - 140
PCB-189L	66		30 - 140
PCB-202L	51		30 - 140
PCB-205L	85		30 - 140
PCB-206L	94		30 - 140
PCB-208L	72		30 - 140
PCB-209L	103		30 - 140

	LCS L	CS	
Surrogate	%Recovery Q	ualifier	Limits
PCB-28L	75		40 - 125
PCB-111L	94		40 - 125
PCB-178L	83		40 - 125

Lab Sample ID: LCSD 320-732336/3-A Matrix: Water Analysis Batch: 733676

							псріу	pc. 101	
Analysis Batch: 733676							Prep Ba	atch: 73	32336
-	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
PCB-1	2000	1970		pg/L		99	50 - 150	3	50
PCB-3	2000	1920		pg/L		96	50 - 150	4	50
PCB-4	2000	2190		pg/L		110	50 - 150	0	50
PCB-15	2000	1940		pg/L		97	50 - 150	1	50
PCB-19	2000	2230		pg/L		112	50 - 150	0	50
PCB-37	2000	2100		pg/L		105	50 - 150	0	50
PCB-54	2000	2300		pg/L		115	50 - 150	5	50
PCB-77	2000	2290		pg/L		114	50 - 150	2	50
PCB-81	2000	2540		pg/L		127	50 - 150	2	50
PCB-104	2000	2900		pg/L		145	50 - 150	1	50
PCB-105	2000	2340		pg/L		117	50 - 150	1	50
PCB-114	2000	2540		pg/L		127	50 - 150	1	50
PCB-118	2000	2310		pg/L		115	50 - 150	3	50
PCB-123	2000	2420		pg/L		121	50 - 150	2	50
PCB-126	2000	2540		pg/L		127	50 - 150	0	50
PCB-155	2000	2830		pg/L		141	50 - 150	0	50
PCB-156	4000	4550		pg/L		114	50 - 150	3	50
PCB-157	4000	4550		pg/L		114	50 - 150	3	50
PCB-167	2000	2400		pg/L		120	50 - 150	0	50
PCB-169	2000	2250		pg/L		112	50 - 150	2	50
PCB-188	2000	2340		pg/L		117	50 - 150	1	50

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Eurofins Sacramento

13

Page 78 of 103 1/25/2024

5

9

13

Method: 1668A - Chlorinated Biphenyl Congeners (HRGC/HRMS) (Continued)

Lab Sample ID: LCSD 320 Matrix: Water Analysis Batch: 733676	D-732336/3-A	X	Spike		LCSD	Client Sa	ample	ID: Lat	Control Prep Ty Prep Ba %Rec	pe: Tot	al/NA
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
PCB-189			2000	2100	Quaimer	pg/L		105	50 - 150	1	50
PCB-202			2000	2450				123	50 - 150	0	50
PCB-202 PCB-205			2000	2450		pg/L pg/L		123	50 - 150 50 - 150	1	50
PCB-205			2000	1930				96	50 - 150 50 - 150	3	50
PCB-200			2000	2210		pg/L		110	50 - 150 50 - 150	0	50
PCB-200 PCB-209			2000	2210		pg/L		107	50 - 150 50 - 150	2	50 50
FCB-209	1.000	LCSD	2000	2140		pg/L		107	50 - 150	Z	50
lastana Dikutian	%Recovery		Limita								
Isotope Dilution PCB-1L	76	Quaimer	Limits 15 - 140								
PCB-3L			15 - 140 15 - 140								
PCB-3L PCB-4L	78		15 - 140 30 - 140								
PCB-4L PCB-15L	79 77										
			30 - 140								
PCB-19L	75		30 - 140								
PCB-37L	70		30 - 140								
PCB-54L	59		30 - 140								
PCB-77L	83		30 - 140								
PCB-81L	82		30 - 140								
PCB-104L	56		30 - 140								
PCB-105L	92		30 - 140								
PCB-114L	88		30 - 140								
PCB-118L	86		30 - 140								
PCB-123L	86		30 - 140								
PCB-126L	96		30 - 140								
PCB-155L	52		30 - 140								
PCB-156L	85		30 - 140								
PCB-156L/157L	85		30 - 140								
PCB-157L	85		30 - 140								
PCB-167L	76		30 - 140								
PCB-169L	93		30 - 140								
PCB-188L	44		30 - 140								
PCB-189L	66		30 - 140								
PCB-202L	53		30 - 140								
PCB-205L	85		30 - 140								
PCB-206L	96		30 - 140								
PCB-208L	72		30 - 140								
PCB-209L	104		30 - 140								
	1000	LCSD									
Surrogate	%Recovery		Limits								
PCB-28L	87	Quaillei	40 - 125								
PCB-20L PCB-111L	87 104		40 - 125 40 - 125								
PCB-178L	90		40 - 125 40 - 125								

QC Association Summary

Client: Eurofins Environment Testing South Central LLC Project/Site: 2312898

Specialty Organics

Prep Batch: 732336

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
320-108192-1	2312898-001 - R6 North-20231213	Total/NA	Water	HRMS-Sep		
320-108192-2	2312898-002 - R6South-20231214	Total/NA	Water	HRMS-Sep		
MB 320-732336/1-A	Method Blank	Total/NA	Water	HRMS-Sep		
LCS 320-732336/2-A	Lab Control Sample	Total/NA	Water	HRMS-Sep		
LCSD 320-732336/3-A	Lab Control Sample Dup	Total/NA	Water	HRMS-Sep		
Analysis Batch: 7336	76					
Analysis Datch. 1330	10					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
MB 320-732336/1-A	Method Blank	Total/NA	Water	1668A	732336	-
LCS 320-732336/2-A	Lab Control Sample	Total/NA	Water	1668A	732336	
LCS 320-732336/2-A LCSD 320-732336/3-A	Lab Control Sample Lab Control Sample Dup	Total/NA Total/NA	Water Water	1668A 1668A	732336 732336	
	Lab Control Sample Dup					1
LCSD 320-732336/3-A	Lab Control Sample Dup					
LCSD 320-732336/3-A Analysis Batch: 7347	Lab Control Sample Dup	Total/NA	Water	1668A	732336	1

10

13

732336

Job ID: 320-108192-1

1/25/2024

1/25/2024

Client: Eurofins Environment Testing South Central LLC Project/Site: 2312898

Client Sample ID: 2312898-001 - R6 North-20231213 Date Collected: 12/13/23 12:00 Date Received: 12/19/23 09:30

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	HRMS-Sep			1017.7 mL	20.0 uL	732336	01/10/24 07:52	GSH	EET SAC
Total/NA	Analysis	1668A		1	1 mL	1 mL	734754	01/19/24 18:05	JBC	EET SAC

Lab Chronicle

Client Sample ID: 2312898-002 - R6South-20231214 Date Collected: 12/14/23 14:45 Date Received: 12/19/23 09:30

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	HRMS-Sep			961.3 mL	20.0 uL	732336	01/10/24 07:52	GSH	EET SAC
Total/NA	Analysis	1668A		1	1 mL	1 mL	734754	01/19/24 19:07	JBC	EET SAC

Laboratory References:

EET SAC = Eurofins Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Lab Sample ID: 320-108192-1 **Matrix: Water**

Lab Sample ID: 320-108192-2

Job ID: 320-108192-1

Matrix: Water

Accreditation/Certification Summary

Client: Eurofins Environment Testing South Central LLC Project/Site: 2312898

Job ID: 320-108192-1

Laboratory: Eurofins Sacramento

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	17-020	02-20-24
ANAB	Dept. of Defense ELAP	L2468	01-20-27
ANAB	Dept. of Energy	L2468.01	01-20-27
ANAB	ISO/IEC 17025	L2468	01-20-24
Arizona	State	AZ0708	08-11-24
Arkansas DEQ	State	88-0691	05-18-24
California	State	2897	01-22-24
Colorado	State	CA00044	08-31-24
lorida	NELAP	E87570	06-30-24
Seorgia	State	4040	01-29-24
ławaii	State	<cert no.=""></cert>	01-29-24
inois	NELAP	200060	03-17-24
ansas	NELAP	E-10375	10-31-24
ouisiana (All)	NELAP	01944	06-30-24
aine	State	CA00004	04-14-24
chigan	State	9947	01-31-24
evada	State	CA00044	07-31-24
ew Hampshire	NELAP	2997	04-18-24
ew Jersey	NELAP	CA005	06-30-24
ew York	NELAP	11666	04-01-24
nio	State	41252	01-29-24
regon	NELAP	4040	01-29-24
exas	NELAP	T104704399-23-17	05-31-24
S Fish & Wildlife	US Federal Programs	58448	04-30-24
SDA	US Federal Programs	P330-18-00239	02-28-26
ah	NELAP	CA000442023-16	02-29-24
rginia	NELAP	460278	03-14-24
ashington	State	C581	05-05-24
/est Virginia (DW)	State	9930C	01-31-25
Visconsin	State	998204680	08-31-24
Vyoming	State Program	8TMS-L	01-28-19 *

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

1/25/2024

Method Summary

Client: Eurofins Environment Testing South Central LLC Project/Site: 2312898

Method	Method Description	Protocol	Laboratory
1668A	Chlorinated Biphenyl Congeners (HRGC/HRMS)	EPA	EET SAC
HRMS-Sep	Separatory Funnel (Liquid-Liquid) Extraction	EPA	EET SAC

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

EET SAC = Eurofins Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Sample Summary

Client: Eurofins Environment Testing South Central LLC Project/Site: 2312898

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
320-108192-1	2312898-001 - R6 North-20231213	Water	12/13/23 12:00	12/19/23 09:30
320-108192-2	2312898-002 - R6South-20231214	Water	12/14/23 14:45	12/19/23 09:30

Environment Testing

Eurofins Environment Testing South Central, LLC 4901 Hawkins NE Albuquerque, NM 87109 TEL. 505-345-3975 FAX 505-345-4107 Website www.hallenvironmental.com

SUB CO	SUB CONTRATOR. Eurofins Sacramento					PHONE. (916) 373-5600 FAX.					
ADDRESS 880 Riverside Parkway							EMAIL.				
CITY S	TATE, ZIP. West	Sacramento, CA 95605									
ITEM	SAMPLE	CLIENT SAMPLE ID	BOTTLE TYPE	MATRIX	COLLECTION DATE	# CONTAINERS	ANALYTICAL	COMMENTS			
1	2312898-001L	R6 North-20231213	1LAMGU	Aqueous	12/13/2023 12 00 00 PM	1 PCBS 1668 -Pease	Apply ICO Pricing-				
2	2312898-002L	R6South-20231214	1LAMGU	Aqueous	12/14/2023 2.45 00 PM	1 PCBS 1668 -Pease	Apply ICO Pricing-				

SPECIAL INSTRUCTIONS / COMMENTS:

Include the LAB ID and CLIENT SAMPLE ID on final reports. Email results to Hall.Lab@et.eurofinsus.com. For Questions email Hall.samplecontrol@et.eurofinsus.com. Please return all coolers and blue ice. Thank you. 1°20 Date: 12/15/2023 REPORT TRANSMITTAL DESIRED Received By alley Hemphill Time: 930 Relinquished B Time: Pate 19/23 M 8:48 AM ONLINE HARDCOPY (extra cost)] FAX EMAIL Date: Received By-Relinquished By-Time: Time: Date: FOR LAB USE ONLY Date: Time: Received By Relinquished By Date: Time: C Attempt to Cool? Temp of samples 1/25/2024 E Standard 🔓 Next BD 3rd BD RUSH 2nd BD 📋 TAT: Comments.

eurofins Environm	ment Testing	Sacramento Sample Receiving Notes (SSRN)
Loc 320 108192	Tracki	ng # 1745 2926 7909
Job Use this form to record Sample Custody Seal, Co File in the job folder with the COC.	GSL	FO / SAT / 2-Day / Ground / UPS / CDO / Courier
Therm. ID: <u>L-09</u> Corr. Factor: (Ice Wet Gel <u>X</u> Cooler Custody Seal <u>NA</u> Cooler ID. <u>NA</u> Temp Observed: <u>0, §</u> °C Correcte	Other d: <u>0, %</u> °C	Notes:
Cooler compromised/tampered with? Cooler Temperature is acceptable? Frozen samples show signs of thaw? Initials OANH Date <u>12/19/23</u> Unpacking/Labeling The Samples Containers are not broken or leaking? Samples compromised/tampered with? COC is complete w/o discrepancies Sample custody seal? Sample containers have legible labels? Sample date/times are provided? Appropriate containers are used? Sample bottles are completely filled? Sample preservatives verified? Is the Field Sampler's name on COC? Samples w/o discrepancies? Zero headspace?* Alkalinity has no headspace? Perchlorate has headspace? (Methods 314, 331, 6850) Multiphasic samples are not present?		Image:
*Containers requiring zero headspace have no headspace, Initials		Initials Date 12-19-23

NTACORPICORPIQAIQA_FACILITIESISACRAMENTO-QAIDOCUMENT-MANAGEMENTIFORMSIQA-812 SAMPLE RECEIVING NOTES DOC

Page 35 of 36

QA-812 MBB 2023-08-07 Page 86 of 103 1/25/2024

Login Sample Receipt Checklist

Client: Eurofins Environment Testing South Central LLC

Login Number: 108192 List Number: 1 Creator: Oropeza, Salvador

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td>REFER TO SSRN</td>	True	REFER TO SSRN
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	N/A	
Samples were received on ice.	N/A	
Cooler Temperature is acceptable.	N/A	
Cooler Temperature is recorded.	N/A	
COC is present.	N/A	
COC is filled out in ink and legible.	N/A	
COC is filled out with all pertinent information.	N/A	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	N/A	
Samples are received within Holding Time (excluding tests with immediate HTs)	N/A	
Sample containers have legible labels.	N/A	
Containers are not broken or leaking.	N/A	
Sample collection date/times are provided.	N/A	
Appropriate sample containers are used.	N/A	
Sample bottles are completely filled.	N/A	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	N/A	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	
Residual Chlorine Checked.	N/A	

Job Number: 320-108192-1

List Source: Eurofins Sacramento

QC SUMMARY REPORT
Hall Environmental Analysis Laboratory, Inc.

AMAFCA

Client:

WO#: 2312898 05-Mar-24

Project:	CMC FY	24 Dry								
Sample ID:	MB-79435	SampType: M	TestCode: EPA Method 1664B							
Client ID:	PBW	Batch ID: 79	435	F	RunNo: 10	1935				
Prep Date:	12/18/2023	Analysis Date: 1	2/19/2023	5	SeqNo: 37	60234	Units: mg/L			
Analyte		Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
N-Hexane Extr	actable Material	ND 10.0								
Sample ID: LCS-79435 SampType: LCS TestCode: EPA Method 1664B										
Client ID:	LCSW	Batch ID: 79	435	F	RunNo: 10	1935				
Prep Date:	12/18/2023	Analysis Date: 1	2/19/2023	S	SeqNo: 37	60235	Units: mg/L			
Analyte		Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
N-Hexane Extr	actable Material	37.6 10.0	40.00	0	94.0	78	114			
Sample ID:	LCSD-79435	SampType: LC	SD	Tes	tCode: EP	A Method	1664B			
Client ID:	LCSS02	Batch ID: 79	435	F	RunNo: 10	1935				
Prep Date:	12/18/2023	Analysis Date: 1	2/19/2023	SeqNo: 3760236 Units: mg/L						
Analyte		Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
N-Hexane Extr	actable Material	36.2 10.0	40.00	0	90.5	78	114	3.79	20	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

QC SUMMARY REPORT
Hall Environmental Analysis Laboratory, Inc.

AMAFCA

WO#: 2312898 05-Mar-24

Project:	CMC F	Y24 Dry										
Sample ID:	MB-79508	SampType: MBLK			TestCode: EPA Method 200.7: Metals							
Client ID:	PBW	Batch	ID: 795	508	F	RunNo: 10)2210					
Prep Date:	12/19/2023	Analysis D	ate: 1/2	2/2024	S	SeqNo: 37	73160	Units: mg/L				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Calcium		ND	1.0									
Magnesium		ND	1.0									
Sample ID:	LCSLL-79508	SampT	ype: LC	SLL	Tes	tCode: EF	A Method	200.7: Metals				
Client ID:	BatchQC	Batch	ID: 795	508	RunNo: 102210							
Prep Date:	12/19/2023	Analysis D	ate: 1/2	2/2024	5	SeqNo: 37	73161	Units: mg/L				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Calcium		0.55	1.0	0.5000	0	110	50	150			J	
Magnesium		0.53	1.0	0.5000	0	107	50	150			J	
Sample ID:	LCS-79508	SampT	ype: LC	s	Tes	tCode: EF	A Method	200.7: Metals				
Client ID:	LCSW	Batch	ID: 795	508	F	RunNo: 10	nNo: 102210					
Prep Date:	12/19/2023	Analysis D	ate: 1/2	2/2024	S	73162	Units: mg/L					
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Calcium		54	1.0	50.00	0	109	85	115				
Magnesium		52	1.0	50.00	0	104	85	115				

Qualifiers:

Client:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall E	nvironme	ental Analysis L	aborato	ry, Inc.						05-Ma
Client: Project:		AFCA C FY24 Dry								
Sample ID:	MB	SampType: M	BLK	Tes	tCode: El	PA 200.8: D	issolved Met	als		
Client ID:	PBW	Batch ID: B1	F	RunNo: 1	01952					
Prep Date:		Analysis Date: 1	2/19/2023	\$	SeqNo: 3	760683	Units: mg/L			
Analyte		Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Copper Lead		ND 0.00050 ND 0.00050								
Sample ID:	LCSLL	SampType: LC	SLL	TestCode: EPA 200.8: Dissolved Metals						
Client ID:	BatchQC	Batch ID: B1	01952	RunNo: 101952						
Prep Date:		Analysis Date: 1	2/19/2023	S	SeqNo: 3	760684	Units: mg/L			
Analyte		Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Lead		0.00051 0.00050	0.0005000	0	103	50	150			
Sample ID:	LCS	SampType: LC	s	TestCode: EPA 200.8: Dissolved Metals						
Client ID:	LCSW	Batch ID: B1	01952	F	RunNo: 1	01952				
Prep Date:		Analysis Date: 1	2/19/2023	5	SeqNo: 3	760686	Units: mg/L			
Analyte		Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Copper		0.024 0.00050	0.02500	0	94.4	85	115			
Lead		0.012 0.00050	0.01250	0	97.8	85	115			
Sample ID:	LCSLLB	SampType: LC	SLL	Tes	tCode: El	PA 200.8: D	issolved Met	als		
Client ID:	BatchQC	Batch ID: B1	01952	F	RunNo: 1	01952				

SPK value SPK Ref Val %REC

0

QC SUMMARY REPORT

Analysis Date: 12/19/2023

PQL

0.00052 0.00050 0.0005000

Result

WO#: 2312898 05-Mar-24

Qualifiers:

Prep Date:

Analyte

Copper

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S
- В Analyte detected in the associated Method Blank

SeqNo: 3760688

104

LowLimit

50

Units: mg/L

HighLimit

150

%RPD

RPDLimit

Qual

- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range RL
- Reporting Limit

Page 90 of 103

Client: Project:	AMA CMC	FCA FY24 Dry									
Sample ID: N	ЛВ	SampT	ype: ME	BLK	Tes	tCode: EF	PA Method	300.0: Anions			
Client ID: P	PBW	Batch	n ID: R1	01967	F	RunNo: 1(01967				
Prep Date:		Analysis D	ate: 12	/19/2023	5	SeqNo: 37	762466	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Nitrate+Nitrite as	Ν	ND	0.20								
Sample ID: L	.CS	SampT	ype: LC	S	Tes	tCode: EF	PA Method	300.0: Anions			
Client ID: L	.csw	Batch	1D: R1	01967	F	RunNo: 1(01967				
Prep Date:		Analysis D	ate: 12	/19/2023	S	SeqNo: 37	762467	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Nitrate+Nitrite as	Ν	3.5	0.20	3.500	0	100	90	110			
Sample ID: N	ЛB	SampT	уре: МЕ	BLK	Tes	tCode: EF	PA Method	300.0: Anions			
Client ID: P	PBW	Batch	n ID: R1	01967	F	RunNo: 1(01967				
Prep Date:		Analysis D	ate: 12	/19/2023	S	SeqNo: 37	762506	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Nitrate+Nitrite as	Ν	ND	0.20								
Sample ID: L	.cs	SampT	ype: LC	S	Tes	tCode: EF	PA Method	300.0: Anions			
Client ID: L	CSW	Batch	ID: R1	01967	RunNo: 101967						
Prep Date:		Analysis D	ate: 12	/19/2023	S	SeqNo: 37	762508	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Nitrate+Nitrite as	Ν	3.4	0.20	3.500	0	97.8	90	110			

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S
- В Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 91 of 103

WO#: 2312898 05-Mar-24

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

QC SUMMARY REPORT
Hall Environmental Analysis Laboratory, Inc.

Client:

Project:	CMC FY2	24 Dry									
Sample ID:	: MB-79411 SampType: MBLK			Tes	tCode: SI	M5210B: BC					
Client ID:	PBW	Batch II	Batch ID: 79411			RunNo: 10	01973				
Prep Date:	12/15/2023	Analysis Date	e: 12 /	/20/2023	5	SeqNo: 37	762618	Units: mg/L			
Analyte		Result I	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Biochemical O	kygen Demand	ND	2.00								
Sample ID: LCS-79411 SampType: LCS					Tes	tCode: SI	M5210B: BC	DD			
Client ID:	LCSW	Batch I	D: 794	11	RunNo: 101973						
Prep Date:	12/15/2023	Analysis Date	e: 12 /	/20/2023	S	SeqNo: 37	762619	Units: mg/L			
Analyte		Result I	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Biochemical O	kygen Demand	141	2.00	198.0	0	71.2	84.6	115.4			S
Sample ID:	2312898-002BDUP	SampTyp	e: DUF	P	Tes	tCode: SI	M5210B: BC	DD			
Client ID:	R6South-20231214	Batch I	D: 794	11	F	RunNo: 1 (01973				
Prep Date:	12/15/2023	Analysis Date	e: 12 /	/20/2023	S	SeqNo: 37	762622	Units: mg/L			
Analyte		Result I	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Biochemical O	kygen Demand let	tion <2.0	2.00						0	20	

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

WO#: **2312898**

05-Mar-24

Client: Project:	AMAFCA CMC FY2										
Sample ID:			ype: ME	R K	Tes	tCode: SI	M5220D' CC	חנ			
Client ID:	PBW		ID: 79			TestCode: SM5220D: COD RunNo: 102200					
Prep Date:	1/2/2024	Analysis D				SegNo: 3		Units: mg/L			
Analyte		Result	PQL		SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chemical Oxy	gen Demand	ND	50.0		Of Render Val	701 CEO	LOWEIIIII	riighEiniit			Quai
Sample ID:	LCS-79689	SampT	ype: LC	S	Tes	tCode: SI	M5220D: CC	DD			
Client ID:	LCSW		ID: 79		F	RunNo: 1	02200				
Prep Date:	1/2/2024	Analysis D	ate: 1/	3/2024		SeqNo: 3		Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chemical Oxy	gen Demand	487	50.0	500.0	0	97.4	90	110			
Sample ID:	LCSLL-79689	SampT	ype: LC	SLL	Tes	tCode: SI	M5220D: CC	DD			
Client ID:	BatchQC	Batch	ID: 79	689	RunNo: 102200						
Prep Date:	1/2/2024	Analysis D	ate: 1 /	3/2024	Ş	SeqNo: 3	773400	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chemical Oxy	gen Demand	49.8	50.0	50.00	0	99.5	50	150			J
Sample ID:	2312898-001HMS	SampT	ype: MS	6	Tes	tCode: SI	M5220D: CC	DD			
Client ID:	R6 North-20231213	Batch	ID: 79	689	F	RunNo: 1	02200				
Prep Date:	1/2/2024	Analysis D	ate: 1 /	3/2024	S	SeqNo: 3	773411	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chemical Oxy	gen Demand	495	50.0	500.0	110.3	77.0	90	110			S
Sample ID:	2312898-001HMSD	SampT	ype: MS	SD	Tes	tCode: SI	M5220D: CO	DD			
Client ID:	R6 North-20231213	Batch	ID: 79	689	F	RunNo: 102200					
Prep Date:	1/2/2024	Analysis D	ate: 1 /	3/2024	S	SeqNo: 3	773412	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chemical Oxy	gen Demand	491	50.0	500.0	110.3	76.2	90	110	0.877	20	S

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Η Holding times for preparation or analysis exceeded

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S
- В Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits

Р Sample pH Not In Range

RL Reporting Limit

Sample ID: 231	12898-001HMSD	SampT	SampType: MSD			tCode: SI	45220D: CO				
Client ID: R6	North-20231213	1213 Batch ID: 79689			F	RunNo: 1(02200				
Prep Date: 1/2	Prep Date: 1/2/2024 Analysis Date: 1/3/2024			SeqNo: 3773412			Units: mg/L				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chemical Oxygen De	Demand	491	50.0	500.0	110.3	76.2	90	110	0.877	20	S

QC SUMMARY REPORT
Hall Environmental Analysis Laboratory, Inc.

Client: Project:	AMAF CMC F	CA Y24 Dry									
Sample ID:	MB-79402	SampT	Гуре: МЕ	BLK	Tes	tCode: SI	M 9223B Fe	cal Indicator:	E. coli M	PN	
Client ID:	PBW Batch ID: 79402				RunNo: 101861						
Prep Date:	12/14/2023 Analysis Date: 12/1			/15/2023	S	SeqNo: 3	755840	Units: MPN	/100mL		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
E. Coli		<1	1.000								

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 94 of 103

QC SUMMARY REPORT
Hall Environmental Analysis Laboratory, Inc.

Client:

WO#: 2312898 05-Mar-24

Project:	CMC FY24 Dry
Sample ID: MB	SampType: MBLK TestCode: SM 4500 NH3: Ammonia
Client ID: PBW	Batch ID: R102011 RunNo: 102011
Prep Date:	Analysis Date: 12/21/2023 SeqNo: 3764147 Units: mg/L
Analyte	Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Nitrogen, Ammonia	ND 1.0
Sample ID: LCS	SampType: LCS TestCode: SM 4500 NH3: Ammonia
Client ID: LCSW	Batch ID: R102011 RunNo: 102011
Prep Date:	Analysis Date: 12/21/2023 SeqNo: 3764148 Units: mg/L
Analyte	Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Nitrogen, Ammonia	10 1.0 10.00 0 104 80 120

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

QC SUMMARY REPORT
Hall Environmental Analysis Laboratory, Inc.

Project: CMC FY24 Dry Sample ID: MB-79761 SampType: mblk TestCode: EPA Method 365.1: Total Phosphorous Client ID: PBW Batch ID: 79761 RunNo: 102279 Prep Date: Analysis Date: 1/6/2024 SeqNo: 3776277 1/6/2024 Units: mg/L SPK value SPK Ref Val %REC Analyte Result PQL LowLimit HighLimit %RPD RPDLimit Qual 0.050 Phosphorus, Total (As P) ND Sample ID: LCS-79761 SampType: LCS TestCode: EPA Method 365.1: Total Phosphorous Client ID: LCSW Batch ID: 79761 RunNo: 102279 Prep Date: 1/6/2024 Analysis Date: 1/6/2024 SeqNo: 3776278 Units: mg/L Analyte Result SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit PQL Qual Phosphorus, Total (As P) 0.25 0.050 0.2500 0 100 90 110

Qualifiers:

Client:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

QC SUMMARY REPORT
Hall Environmental Analysis Laboratory, Inc.

Project: CMC FY24 Dry Sample ID: MB-79518 SampType: MBLK TestCode: SM2540C MOD: Total Dissolved Solids Client ID: PBW Batch ID: 79518 RunNo: 102025 Prep Date: Analysis Date: 12/21/2023 SeqNo: 3764700 12/20/2023 Units: mg/L Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Total Dissolved Solids ND 50.0 Sample ID: LCS-79518 SampType: LCS TestCode: SM2540C MOD: Total Dissolved Solids Client ID: LCSW Batch ID: 79518 RunNo: 102025 Prep Date: 12/20/2023 Analysis Date: 12/21/2023 SeqNo: 3764701 Units: mg/L %REC SPK Ref Val HighLimit %RPD **RPDLimit** Analyte Result PQL SPK value LowLimit Qual Total Dissolved Solids 995 50.0 1000 0 99.5 80 120 Sample ID: 2312898-001DDUP SampType: DUP TestCode: SM2540C MOD: Total Dissolved Solids Client ID: R6 North-20231213 Batch ID: 79518 RunNo: 102025 Prep Date: 12/20/2023 Analysis Date: 12/21/2023 SeqNo: 3764719 Units: mg/L SPK value SPK Ref Val %REC RPDLimit Analyte Result PQL HighLimit %RPD Qual LowLimit Total Dissolved Solids 202 50.0 0.985 10

Qualifiers:

Client:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Client:	AMAFCA										
Project:	CMC FY2	4 Dry									
Sample ID:	MB-79864	SampT	ype: ME	BLK	TestCode: EPA 351.2: TKN						
Client ID:	PBW Batch ID: 79864				F	RunNo: 1(02531				
Prep Date:	1/11/2024	Analysis D	ate: 1/	13/2024	Ş	SeqNo: 37	787319	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Nitrogen, Kjeld	ahl, Total	ND	0.50								
Sample ID:	LCSLL-79864	SampT	ype: LC	SLL	Tes	tCode: EF	PA 351.2: T	KN			
Client ID:	BatchQC	Batch	ID: 798	364	F	RunNo: 1 (02531				
Prep Date:	1/11/2024	Analysis D	ate: 1/	13/2024	Ś	SeqNo: 3	787320	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Nitrogen, Kjeld	ahl, Total	0.28	0	0.5000	0	55.1	50	150			
Sample ID:	LCS-79864	SampT	ype: LC	S	Tes	tCode: EF	PA 351.2: T	KN			
Client ID:	LCSW	Batch	ID: 798	364	RunNo: 102531						
Prep Date:	1/11/2024	Analysis D	ate: 1 /	13/2024	5	SeqNo: 37	787321	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Nitrogen, Kjeld	ahl, Total	9.5	0.50	10.00	0	95.2	90	110			
Sample ID:	2312898-001DMS	SampT	уре: МS	;	Tes	tCode: EF	PA 351.2: T	KN			
Client ID:	R6 North-20231213	Batch	ID: 798	364	RunNo: 102531						
Prep Date:	1/11/2024	Analysis D	ate: 1 /	13/2024	Ş	SeqNo: 3	787323	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Nitrogen, Kjeld	ahl, Total	10	0.50	10.00	0	102	90	110			Н
Sample ID:	2312898-001DMSD	SampT	уре: МS	D	Tes	tCode: EF	PA 351.2: T	KN			
Client ID:	R6 North-20231213	Batch	ID: 798	364	F	RunNo: 10	02531				
Prep Date:	1/11/2024	Analysis D	ate: 1/	13/2024	5	SeqNo: 37	787324	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Nitrogen, Kjeld	ahl, Total	11	0.50	10.00	0	106	90	110	3.87	20	Н

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S
- В Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits

Р Sample pH Not In Range

RL Reporting Limit WO#: 2312898 05-Mar-24

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client: Project:	AMAFC CMC FY									
	MB-79522	SampType:		Too	tCodo: ON	1 2540D: T				
		1 31					55			
Client ID:	PBW	Batch ID:			RunNo: 10					
Prep Date:	12/20/2023	Analysis Date:	12/21/2023	5	SeqNo: 37	64409	Units: mg/L			
Analyte		Result PQ	L SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Suspended So	lids	ND 4	.0							
Sample ID:	LCS-79522	SampType:	LCS	Tes	tCode: SN	1 2540D: T	SS			
Client ID:	LCSW	Batch ID:	79522	F	RunNo: 10	2014				
Prep Date:	12/20/2023	Analysis Date:	12/21/2023	S	SeqNo: 37	64410	Units: mg/L			
Analyte		Result PQ	L SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Suspended So	lids	97 4	.0 91.90	0	106	83.89	119.7			
Sample ID:	MB-79546	SampType:	MBLK	Tes	tCode: SN	1 2540D: T	SS			
Client ID:	PBW	Batch ID:	79546	F	RunNo: 10	2038				
Prep Date:	12/21/2023	Analysis Date:	12/22/2023	S	SeqNo: 37	65815	Units: mg/L			
Analyte		Result PQ	L SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Suspended So	lids	ND 4	.0							
Sample ID:	LCS-79546	SampType:	LCS	Tes	tCode: SN	1 2540D: T	SS			
Client ID:	LCSW	Batch ID:	79546	F	RunNo: 10	2038				
Prep Date:	12/21/2023	Analysis Date:	12/22/2023	S	SeqNo: 37	65816	Units: mg/L			
Analyte		Result PQ	L SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Suspended So	lids	87 4	.0 91.90	0	94.7	83.89	119.7			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S
- В Analyte detected in the associated Method Blank
- Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit
- Е

WO#: 05-Mar-24

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

🔅 eurofins

Environment Testin

Eurofins Environment Testing South Central, LLC 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

			Webane. W	ww.hallenvironmen			
Client Name:	AMAFCA	Woi	k Order Nu	mber: 2312898		RcptNo	: 1
Received By:	Tracy Casarrubia	s 12/14/	2023 4:00:	00 PM			
Completed By:	Cheyenne Cason	12/14/	2023 4:12:	03 PM	Chenel		
Reviewed By:	The	12/14/23	m	12/15/23			
Chain of Cus	tody	10, 11				_	
1. Is Chain of C	ustody complete?			Yes 🗹	No 🗌	Not Present	
2. How was the	sample delivered?			Client			
Log In						_	
Was an atten	npt made to cool the	samples?		Yes 🗹	No	NA	
4. Were all sam	ples received at a ter	nperature of >0° (Yes	No 🗹	NA 🗌	
5 Sample(s) in	proper container(s)?		Samples	were collected t Yes V	he same day and No	chilled.	
6. Sufficient sam	ple volume for indica	ated test(s)?		Yes 🗹	No 🗌		
7. Are samples (except VOA and ON	G) properly preser	ved?	Yes 🗹	No 🗌		
8. Was preserva	tive added to bottles	?		Yes	No 🗹	NA	
9. Received at le	east 1 vial with heads	pace <1/4" for AQ	VOA?	Yes 🗹	No 🗌	NA	
0. Were any sar	nple containers recei	ived broken?		Yes	No 🗹	# of preserved	
1 Does paperwo	ork match bottle labe	ls?		Yes 🔽	No 🗌	for pH:	1
	ancies on chain of cu				Nu 123/		>12 unless noted)
2. Are matrices	correctly identified on	Chain of Custody	?	Yes 🗸	12/11No 1	Adjusted?	MU
Is it clear what	t analyses were requ	ested?		Yes 🗹	No 🗌		Thestal
	ng times able to be n ustomer for authoriza			Yes 🗹	No 🗌	Checked by:	1012/131
						BOD/coliform : m	2 12/14/23
pecial Hand	ing (if applicabl	<u>'e)</u>					
15. Was client no	otified of all discrepar	ncies with this orde	r?	Yes 🗌	No 🗌	NA 🗹	-
Person	Notified:		Da	te:			
By Who	om:		- Via	: eMail] Phone 🗌 Fax	In Person	
Regard	ing:						
Client I	nstructions:						
16. Additional re	marks:						
7. Cooler Info	mation						
Cooler No		dition Seal Intac	t Seal No	Seal Date	Signed By		
1	3.8 Good	Not Presen	t Morty			1	A
1 2	7.7 Good	Not Presen		01 1	3	me day day in	1.1.1

Chain-of-Custody Record	Turn-Around Time:	
Client: AMAFCA	Standard Rush	
	Project Name:	÷ .
Mailing Address:	CMC FYZY Vry 4901 Hawkins NE - Albuquerque, NM 87109	
	Project #:	
	Tel. 505-345-3975 Fax 505-345-4107	
Phone #:	Analysis Request	
email or Fax#: pchaviz Camafra.org	Project Manager: $(\overline{\xi}) (\widehat{g}) (\overline{\xi}) (\xi$	_
QA/QC Package:	Patrick Chavez (805, 800, 81, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1	
□ Standard □ Level 4 (Full Validation)	Patrick Chavez 88270SIMS 88270SIMS 8270SIMS 8270SIMS	
Accreditation: Az Compliance	Loject Manager: Another and the sector of the sector o	
□ NELAC □ Other	On Ice: A. As Ino Ou loc: No No Image: State of the strength o	
EDD (Type)	Con Ice: Thes No Con Ice: Thes No Consistence Construction Construction Container Less Construction HEAL No. Container Less Construction HEAL No. Container Loss Construction HEAL No. Container Loss Construction HEAL No. Container Loss Construction HEAL No. Construction Construction HEAL No. Construction HEAL No. No. Construction HEAL No. Construction Construction HEAL No. Construction Construction Construction HEAL No. Construction Construction Construction Construction HEAL No. Construction Construction Construction	
	Container Preservative HEAL No. Type and # Type HEAL No. Type and # Type HEAL No. Total Colifor 10 (C) + BTEX / WI Type and # Type HEAL No. Total Colifor 10 (C) + BTEX / WI Total Colifor 10 (C) + BTEX / WI Type and # Type HEAL No.	
190 ¹¹	Container Preservative HEAL No. HEAL No. HEAL No. 200 (VC 8 8081 Peer 1 HEAL No. 200 (VC 9 8 8081 Peer 1 HEAL NO. 200 (VC 9 8 8081 P	
Date Time Matrix Sample Name	Type and # Type 12312898 Im	
12-13-22 12-13-1-1200 AOI RG North-2023 121		
12-14-23 1445 R6 South -202312	u mz	
12/19/27 IPP Blook	-12/1a/2)	
Der handle haltle		+
Jul Jul 7ml		
		_
		+-
Date: Time: Relinquished by:	Received by: Via: CPO Date Time Remarks:	
12/14/23 6:01 Var 1	$\frac{1}{1000} = 3.8^{\pm} 0 = 3.8^{\pm}$	
Date: Time: Relinquished by:	Received by: Via: Date Time 7.7 - Ø - 7.7 -	
	morty	

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

Collaborative Monitoring Cooperative - Analyses List Attach to Chain of Custody

Analyte (Bold Indicates WQS)	CAS #	Fraction	Method #	MDL (µg/L
Hardness (Ca + Mg)	NA	Total	200.7	2.4
Lead	7439-92-1	Dissolved	200.8	0.09
Copper	7440-50-8	Dissolved	200.8	1.06
Ammonia + organic nitrogen	7664-41-7	Total	350.1	31.32
Total Kjehldal Nitrogen	17778-88-0	Total	351.2	58.78
Nitrate + Nitrite	14797-55-8	Total	353.2	10.17
Polychlorinated biphenyls (PCBs)	1336-36-3	Total	1668	0.014
Tetrahydrofuran (THF)	109-99-9	Total	8260C	7.9
bis(2-Ethylhexyl)phthalate	117-81-7	Total	8270D	0.2
Dibenzofuran	132-64-9	Total	8270D	0.2
Indeno(1,2,3-cd)pyrene	193-39-5	Total	8270D	0.2
Benzo(b)fluoranthene	205-99-2	Total	8270D	0.1
Benzo(k)fluoranthene	207-08-9	Total	8270D	0.1
Chrysene	218-01-9	Total	8270D	0.2
Benzo(a)pyrene	50-32-8	Total	8270D	0.3
Dibenzo(a,h)anthracene	53-70-3	Total	8270D	0.3
Benzo(a)anthracene	56-55-3	Total	8270D	0.2
Dieldrin	60-57-1	Total	8270D	0.1
Pentachlorophenol	87-86-5	Total	8270D	0.2
Benzidine	92-87-5	Total	8270D	0.1
Chemical Oxygen Demand	E1641638 ²	Total	HACH	5100
Gross alpha (adjusted)	NA	Total	Method 900	0.1 pCi/L
Total Dissolved Solids	E1642222 ²	Total	SM 2540C	60.4
Total Suspended Solids	NA	Total	SM 2540D	3450
Biological Oxygen Demand	N/A	Total	Standard Methods	930
Oil and Grease		Total	1664A	5000
Ecoli			SM 9223B	
pH			SM 4500	
Phosphorus		Dissolved	365.1	100
Phosphorus		Total	365.1	100
Chromium IV		Total	3500Cr C-2011	100

12 a. 1

5

Appendix F - Minimum Quantification Levels (MQL's)

The following Minimum Quantification Levels (MQL's) are to be used for reporting pollutant data for NPDES permit applications and/or compliance reporting.

12

-

	primite reporting.		
POLLUTANTS	MQL µg/l	POLLUTANTS	MQL µg/l
MI	ETALS, RADIOACT	IVITY, CYANIDE and CHLORINE	
Aluminum	2.5	Molybdenum	10
Antimony	60	Nickel	0.5
Arsenic	0.5	Selenium	5
Barium	100	Silver	0.5
Beryllium	0.5	Thalllium	0.5
Boron	100	Uranium	0.1
Cadmium	1	Vanadium	50
Chromium	10	Zinc	20
Cobalt	50	Cyanide	10
Copper	0.5	Cyanide, weak acid dissociable	10
Lead	0.5	Total Residual Chlorine	33
Mercury (*)	0.0005		
	0.005		
		DIOXIN	
2,3,7,8-TCDD	0.00001		
	VOLAT	ILE COMPOUNDS	
Acrolein	50	1,3-Dichloropropylene	10
Acrylonitrile	20	Ethylbenzene	10
Benzene	10	Methyl Bromide	50
Bromoform	10	Methylene Chloride	20
Carbon Tetrachloride	2	1,1,2,2-Tetrachloroethane	10
Chlorobenzene	10	Tetrachloroethylene	10
Clorodibromomethane	10	Toluene	10
Chloroform	50	1,2-trans-Dichloroethylene	10
Dichlorobromomethane	10	1,1,2-Trichloroethane	10
1,2-Dichloroethane	10	Trichloroethylene	10
1,1-Dichloroethylene	10	Vinyl Chloride	10
1,2-Dichloropropane	10		
	ACII	D COMPOUNDS	
2-Chlorophenol	10	2,4-Dinitrophenol	50
2,4-Dichlorophenol	10	Pentachlorophenol	5
2,4-Dimethylphenol	10	Phenol	10
4,6-Dinitro-o-Cresol	50	2,4,6-Trichlorophenol	10
.,. 2		2, ., 0 11101101010101	

5

34

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Patrick Chavez Albuquerque Metropolitan Arroyo Flood Control Authority 2600 Prospect Ave NE Albuquerque, New Mexico 87107 Generated 7/1/2024 11:06:42 AM

JOB DESCRIPTION

CMC

5 6 7

JOB NUMBER

885-6986-1

Eurofins Albuquerque 4901 Hawkins NE Albuquerque NM 87<u>109</u>

Eurofins Albuquerque

Job Notes

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing South Central, LLC Project Manager.

Authorization

Authorized for release by Erin Munoz, Project Manager Erin.Munoz@et.eurofinsus.com

(505)345-3975

Generated 7/1/2024 11:06:42 AM

1

Table of Contents

1
3
4
5
6
8
9
10
11
12
13

Definitions/Glossary

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project/Site: CMC

Job ID: 885-6986-1

Glossary		3
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	4
%R	Percent Recovery	
CFL	Contains Free Liquid	5
CFU	Colony Forming Unit	5
CNF	Contains No Free Liquid	6
DER	Duplicate Error Ratio (normalized absolute difference)	6
Dil Fac	Dilution Factor	-7
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	8
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	9
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
TNTC	Too Numerous To Count	

Job ID: 885-6986-1

Job ID: 885-6986-1

Eurofins Albuquerque

Job Narrative 885-6986-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 6/26/2024 4:49 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 26.3°C.

Biology

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

06/26/2024: Rio Grande North and Rio Grande at Alameda E. coli tested.

Field Parameters: - <u>North</u> Temp = 26.4^oC pH = 8.41 Conductivity = 254.1 Dissolved Oxygen = 4.7 - <u>Alameda</u> Temp = 28.9^oC pH = 8.40 Conductivity = 272.1 Dissolved Oxygen = 4.5

Client Sample Results

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project/Site: CMC Job ID: 885-6986-1

Client Sample ID: RG-	North 202406	6 <mark>26</mark>					Lab Sam	ole ID: 885-6	986-1
Date Collected: 06/26/24 1	5:05							Matrix	Water
Date Received: 06/26/24 16	6:49								
Method: SM 9223B - Coli	forms, Total, and	d E.Coll (Col	ilert - Quan	ti Tray)					
Analyte	Result	Qualifier	RL	MDI	Unit	р	Prepared	A see ly meet	
Analyte	Result	Quanner		IVIDL	Unit	D	Frepareu	Analyzed	Dil Fac

Client Sample Results

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project/Site: CMC Job ID: 885-6986-1

Client Sample ID <mark>: RG</mark>	- Alameda 20240626					Lab Sam	ple ID: 885-6	5986-2
ate Collected: 06/26/24	16:28						Matrix	: Water
ate Dessived, 06/26/24	16.10							
Date Received: 06/26/24 ⁻	10.43							
•		illeret Origina	41 T					
Method: SM 9223B - Co	liforms, Total, and E.Coll (Col	ilert - Quan	ti Tray)					
•		ilert - Quan _{RL}	ti Tray) _{MDL}	Unit	D	Prepared	Analyzed	Dil Fac

QC Sample Results

Job ID: 885-6986-1

Method: 9223B - Coliforms, Total, and E.Coll (Colilert - Quanti Tray)

Lab Sample ID: MB 885-7444/1 Matrix: Water								ole ID: Method Prep Type: To	
Analysis Batch: 7444									
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
0. cherichia coli	ND		1rb	1 <i>r</i> b	MPN/1LL2 4	_		L6/E6/Ef 18:L9	1

0 urosin. Albuquerque

QC Association Summary

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project/Site: CMC

Job ID: 885-6986-1

5

Biology

Analysis Batch: 7444

th 20240626	Total/NA	Matrix Water	Method 9223B	Prep Batch
	Total/NA	Water	9223B	
	th 20240626 meda 20240626 Blank	meda 20240626 Total/NA	meda 20240626 Total/NA Water	meda 20240626 Total/NA Water 9223B

Lab Chronicle

			L	_ab Chro	nicle					1
Client: Albuque Project/Site: C		olitan Arroyo Fl	lood Control	Authority				Job	DID: 885-6986-1	2
Date Collecte	d: 06/26/24 1		10626				La	ab Sample ID): 885-6986-1 Matrix: Water	
ate Receive	d: 06/26/24 10	<u>ð:49</u>								4
	Batch	Batch		Dilution	Batch			Prepared		
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed		Ę
Total/NA	Analysis	9223B		1	7444	КН	EET ALB	06/26/24 18:09		
lient Sam	ple ID: RG	- Alameda 2	20240626				La	ab Sample ID): 885-6986-2	
	ed: 06/26/24 1		•••••						Matrix: Water	
ate Receive	d: 06/26/24 10	6:49								
	Batch	Batch		Dilution	Batch			Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed		
otal/NA	Analysis	9223B			7444	KH	EETALB	06/26/24 18:09		
-		4004 Upudding Ni				0075				
Laboratory Ref EET ALB = Euro		e, 4901 Hawkins N	E, Albuquerque	, NM 87109, Ti	드L (505)345-	-3975				

Accreditation/Certification Summary

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project/Site: CMC

Job ID: 885-6986-1

jon The following analytes ar for which the agency doe			NM100001	02-26-25				
0,		rt, but the laboratory is r	not certified by the governing author	ity This list may include analytes				
for which the agency doe								
	es not offer certification							
Analysis Method	Prep Method	Matrix	Analyte					
9223B		Water	Escherichia coli					

,	Client:		NAFC	ustody R A		Turn-Around Standard Project Nam Project #:	d 🗆 Rush					A		AL /.hall IE -	YS lenv Alb	ironr uque	5 L nent erque	AE al.co e, Ni	885	6986 7	coc	(₹	L XY
	Phone #													A	naly	sis I	Req	uest	1				
	email or Fax#: <u>PCcWC2</u> AMATCA.02C1 QA/QC Package:					Project Manager: Patrick CHaver			TMB's (8021)) / MRO)	PCB's		SIMS		PO4, SO4			(Absent)	ney				
	Accreditation: Accompliance NELAC Other DEDD (Type)				IOn Ice: Z-Yes D No			~	RO / DRO	es/8082 F	504.1)) or 8270	s	NO ₂ ,		(AO	(Present	ENUMORAHIM					
				Commis N		Container	Preservative	<u>y05;</u> <u>0.3 ±0=26.3 (°C)</u> HEAL No.	BTEX / MTBE	TPH:8015D(GRO / DRO / MRO)	8081 Pesticides/8082	EDB (Method 504.1)	PAHs by 8310 or 8270SIMS	RCRA 8 Metals	CI, F, Br, NO ₃ ,	8260 (VOA)	8270 (Semi-VOA)	Total Coliform (Present/Absent)	Scoli En		-		
age			Matrix	Sample Na	ame	Type and #	NA Thid		m	F	8	Ξ	<u> </u>	R	0	.8	8	Ĕ	7	_		-	
120	4	1505	1	DC- Ma	Weda Zozyowza	TDETTA	INA TOUD				-		-+			-	-	_	N				
of 13	_{	1628		KOI-MU	Wella CO Agos A						_								X				
												_	-+	-									
ł														-	_	-	-	_	-				
										_	_			-	_		-	-				_	
ł			<u> </u>				1				_			_	_				-		\rightarrow	_	
										_			\rightarrow	-			-			_			
													-+	-									
													-								\neg		
Ì																							
Ì				0																			
6	Date 26 Jul Date	Time 1647. Time	Relinquist	Ye	\mathcal{X}	Received by	Via CPO Via	Date Time 62624 16:49 Date Time	Ren	nark	s;	,										1	

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories This serves as notice of this possibility Any sub-contracted data will be clearly notated on the analytical report.

ப

Login Sample Receipt Checklist

Client: Albuquerque Metropolitan Arroyo Flood Control Authority

Login Number: 6986 List Number: 1 Creator: McQuiston, Steven

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	False	Received same day of collection; chilling process has begun.
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

List Source: Eurofins Albuquerque

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Patrick Chavez Albuquerque Metropolitan Arroyo Flood Control Authority 2600 Prospect Ave NE Albuquerque, New Mexico 87107 Generated 7/31/2024 2:26:56 PM

JOB DESCRIPTION

CMC

5 6 7

> 12 13

JOB NUMBER

885-7077-1

Eurofins Albuquerque 4901 Hawkins NE Albuquerque NM 87<u>109</u>

Eurofins Albuquerque

Job Notes

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing South Central, LLC Project Manager.

Authorization

Authorized for release by Erin Munoz, Project Manager Erin.Munoz@et.eurofinsus.com

(505)345-3975

Generated 7/31/2024 2:26:56 PM 1

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	6
Client Sample Results	9
Isotope Dilution Summary	29
QC Sample Results	33
QC Association Summary	61
Lab Chronicle	67
Certification Summary	70
Subcontract Data	73
Chain of Custody	87
Field Data Sheets	93
Receipt Checklists	94

Definitions/Glossary

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project/Site: CMC

MDC

Minimum Detectable Concentration (Radiochemistry)

Job ID: 885-7077-1

Project/Site: C	CMC	
Qualifiers		3
GC/MS VOA		
Qualifier	Qualifier Description	4
4	Sample was prepped or analyzed beyond the specified holding time. This does not meet regulatory requirements.	-
GC/MS Semi	VOA	5
Qualifier	Qualifier Description	
*+	LCS and/or LCSD is outside acceptance limits, high biased.	6
S1+	Surrogate recovery exceeds control limits, high biased.	
GC Semi VOA		
Qualifier	Qualifier Description	
* +	LCS and/or LCSD is outside acceptance limits, high biased.	- 8
S1-	Surrogate recovery exceeds control limits, low biased.	
S1+	Surrogate recovery exceeds control limits, high biased.	9
LCMS		
Qualifier	Qualifier Description	
	Value is EMPC (estimated maximum possible concentration).	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Dioxin		
Dioxin Qualifier	Qualifier Description	
	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	_ 12
		10
7	The reported result is the estimated maximum possible concentration of this analyte, quantitated using the theoretical ion ratio. The measured ion ratio does not meet qualitative identification criteria and indicates a possible interference.	
Motolo		
Metals Qualifier	Qualifier Description	
	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	_
5		
General Chen	nistry	
Qualifier	Qualifier Description	_
*_	LCS and/or LCSD is outside acceptance limits, low biased.	
b	Result Detected in the Unseeded Control blank (USB).	
HF	Parameter with a holding time of 15 minutes. Test performed by laboratory at client's request. Sample was analyzed outside of hold time.	
Rad		
Qualifier	Qualifier Description	
G	The Sample MDC is greater than the requested RL.	_
U	Result is less than the sample detection limit.	
Glossary		-
Abbreviation	These commonly used abbreviations may or may not be present in this report.	_
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	_
~ %R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
NCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project/Site: CMC

Job ID: 885-7077-1

Glossary (Continued)

Abbreviation	These commonly used abbreviations may or may not be present in this report.
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Job ID: 885-7077-1

Job ID: 885-7077-1

Eurofins Albuquerque

Job Narrative 885-7077-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 6/27/2024 2:37 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 1.9°C and 10.4°C.

Subcontract Work

Method Hexavalent Chromium: This method was subcontracted to Pace Analytical Services LLC. The subcontract laboratory certification is different from that of the facility issuing the final report. The subcontract report is appended in its entirety.

GC/MS VOA

Method 624.1: The following samples were received outside of holding time: RG-North20240626 (885-7077-1) and RG-South20240627 (885-7077-2).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC/MS Semi VOA

Method 625.1_QQQ: Surrogate recovery for the following sample was outside the upper control limit: RG-North20240626 (885-7077-1). This sample did not contain any target analytes; therefore, re-extraction and/or re-analysis was not performed.

Method 625.1_QQQ: Six surrogates are used for this analysis. The laboratory's SOP allows one base and one acid of these surrogates to be outside acceptance criteria without performing re-extraction/re-analysis. The following sample contained an allowable number of surrogate compounds outside limits: RG-South20240627 (885-7077-2). These results have been reported and qualified.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Pesticides

Method 8081B_LL: The surrogate recovery for the blank associated with preparation batch 860-169461 and analytical batch 860-169649 was outside the upper control limits.

Method 8081B_LL: The surrogate recovery for the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) associated with preparation batch 860-169461 and analytical batch 860-169649 was outside the upper control limits.

(LCS 860-169461/2-A) and (LCSD 860-169461/3-A)

Method 8081B_LL: The laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 860-169461 and analytical batch 860-169649 recovered outside control limits for the following analytes: Dieldrin. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Pesticides/PCBs

Method 608.3: The Tetrachloro-m-xylene surrogate recovery for the following samples was outside acceptance limits (high biased) on the primary column: (LCS 860-169312/2-A), (LCSD 860-169312/3-A) and (MB 860-169312/1-A). The recovery is within acceptance limits on the other column, indicating that the extraction process was in control.

Case Narrative

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project: CMC

Eurofins Albuquerque

Job ID: 885-7077-1 (Continued)

Method 608.3: The laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 860-169312 and analytical batch 860-169369 recovered outside control limits for the following analytes: Dieldrin. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method 608.3: The surrogate recovery for the blank associated with preparation batch 860-169818 and analytical batch 860-169920 was outside the upper control limits.

(MB 860-169818/1-A)

Method 608.3: The surrogate recovery for the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) associated with preparation batch 860-169818 and analytical batch 860-169920 was outside the upper control limits.

(LCS 860-169818/2-A) and (LCSD 860-169818/3-A)

Method 608.3: The laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 860-169818 and analytical batch 860-169920 recovered outside control limits for the following analytes: Dieldrin. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method 608.3: Surrogate recovery for the following samples were outside the upper control limit: RG-North20240626 (885-7077-1) and RG-South20240627 (885-7077-2). This sample did not contain any target analytes; therefore, re-extraction and/or re-analysis was not performed.

Method 608.3: The following samples were prepared outside of preparation holding time due to surrogate recovery outside control limits (low biased) for original extraction RG-North20240626 (885-7077-1) and RG-South20240627 (885-7077-2).

Method 608.3: Surrogate recovery for the following sample was outside control limits: RG-North20240626 (885-7077-1). Reextraction and/or re-analysis was performed and surrogate recovery was outside control limits.

Method 608.3: Surrogate recovery for the following samples were outside control limits: RG-North20240626 (885-7077-1) and RG-South20240627 (885-7077-2). Re-extraction and/or re-analysis was performed and surrogate recovery was outside control limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

PFAS

Method 1633: The following samples in preparation batch 320-779486 were observed to have a thin layer of sediment present in the bottom of the bottle prior to extraction. RG-North20240626 (885-7077-1) and RG-South20240627 (885-7077-2)

Method 1633: The following samples in preparation batch 320-779486 were brown in color prior to extraction. RG-North20240626 (885-7077-1) and RG-South20240627 (885-7077-2)

Method 1633: The following samples in preparation batch 320-779486 were yellow in color following extraction. RG-North20240626 (885-7077-1) and RG-South20240627 (885-7077-2)

Method 1633: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 320-779486.

Method 1633: The following samples were received preserved with Trizma. Preservation was not added to batch QC samples. RG-North20240626 (885-7077-1), RG-South20240627 (885-7077-2) and EB-20240627 (885-7077-3)

Method 1633: The "I" qualifier means the transition mass ratio for the indicated analyte was outside the established ratio limits. The qualitative identification of the analyte has some degree of uncertainty. However, analyst judgment was used to positively identify the analyte: RG-North20240626 (885-7077-1) and RG-South20240627 (885-7077-2).

Method 1633: The continuing calibration verification (CCV) associated with batch 320-780306 recovered above the upper control limit for Perfluoroheptanesulfonic acid (PFHpS), 4,8-Dioxa-3H-perfluorononanoic acid (ADONA), 9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS), 11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11CI-PF3OUdS) and 3-Perfluoroheptylpropanoic acid (7:3 FTCA). The samples associated with this CCV were non-detects for the affected analytes;

Job ID: 885-7077-1 (Continued)

Eurofins Albuquerque

therefore, the data have been reported. RG-North20240626 (885-7077-1), RG-South20240627 (885-7077-2), EB-20240627 (885-7077-3) and (CCV 320-780306/1).

Method 1633: The continuing calibration verification (CCV) associated with batch 320-780306 recovered above the upper control limit for 1H,1H,2H,2H-Perfluorohexane sulfonic acid (4:2 FTS), 4,8-Dioxa-3H-perfluorononanoic acid (ADONA), 9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid(9CI-PF3ONS) and 11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11CI-PF3OUdS). The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. RG-North20240626 (885-7077-1), RG-South20240627 (885-7077-2), EB-20240627 (885-7077-3) and (CCV 320-780306/10).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Hi-Res PCBs

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

Method SM5210B_BODCalc: The glucose-glutamic acid standard (LCS) recovered outside the recovery limits specified in the method in batch 885-7579. The method holding time had expired, therefore the analysis was not repeated. The data was qualified and reported.

Method SM5210B_BODCalc: The method blank result associated with batch 885-7579 was higher than the method-required limit of 0.2 mg/L.

Method SM5210B_BODCalc: Chlorine was present in the following sample and treated per Method/SOP: RG-North20240626 (885-7077-1). Results may be biased low.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Gas Flow Proportional Counter

Method 900.0: Gross Alpha Beta prep batch 160-669229:

The detection goal was not met for the following samples due to a reduction of the sample size attributed to high residual mass: RG-North20240626 (885-7077-1), RG-South20240627 (885-7077-2) and (885-7077-K-2-D DU). Analytical results are reported with the detection limit achieved.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Rad

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Biology

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

06/26/2024: Rio Grande North and 06/27/2024 Rio Grande South; both full suite of testing. Field Parameters: - North Temp = $26.4^{\circ}C$ pH = 8.41Conductivity = 254.1Dissolved Oxygen = 4.7- South Temp = $28.3^{\circ}C$ pH = 8.30Conductivity = 337.0Dissolved Oxygen = 5.5

Client Sample Results

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project/Site: CMC

Client Sample ID: RG-North20240626 Date Collected: 06/26/24 15:05

Date Received: 06/27/24 14:37

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrahydrofuran	ND	Н	0.010	0.0018	mg/L			07/03/24 02:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		63 - 144			-		07/03/24 02:47	1
4-Bromofluorobenzene (Surr)	105		74 - 124					07/03/24 02:47	1
Dibromofluoromethane (Surr)	106		75 - 131					07/03/24 02:47	1
Toluene-d8 (Surr)	102		80 - 120					07/03/24 02:47	1

Method: EPA 625.1 - Semivolatile Organic Compounds (GC-MS/MS)

	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
	Benzidine	ND		1.2	0.091	ug/L		07/02/24 12:40	07/03/24 19:01	1	
	Benzo[a]anthracene	ND	*+	0.12	0.0096	ug/L		07/02/24 12:40	07/03/24 19:01	1	
	Benzo[b]fluoranthene	ND	*+	0.58	0.067	ug/L		07/02/24 12:40	07/03/24 19:01	1	
l	Bis(2-ethylhexyl) phthalate	ND	*+	2.9	1.4	ug/L		07/02/24 12:40	07/03/24 19:01	1	
	Chrysene	ND	*+	0.58	0.082	ug/L		07/02/24 12:40	07/03/24 19:01	1	
	Dibenz(a,h)anthracene	ND		0.12	0.051	ug/L		07/02/24 12:40	07/03/24 19:01	1	
l	Dibenzofuran	ND		0.58	0.11	ug/L		07/02/24 12:40	07/03/24 19:01	1	
	Indeno[1,2,3-cd]pyrene	ND		0.58	0.10	ug/L		07/02/24 12:40	07/03/24 19:01	1	
	Pentachlorophenol	ND		1.2	1.0	ug/L		07/02/24 12:40	07/03/24 19:01	1	
l	Benzo[k]fluoranthene	ND	*+	0.58	0.048	ug/L		07/02/24 12:40	07/03/24 19:01	1	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	103		43 - 130	07/02/24 12:40	07/03/24 19:01	1
2-Fluorophenol (Surr)	107		19 - 120	07/02/24 12:40	07/03/24 19:01	1
Nitrobenzene-d5 (Surr)	151	S1+	37 - 133	07/02/24 12:40	07/03/24 19:01	1
Phenol-d5 (Surr)	77		8 - 124	07/02/24 12:40	07/03/24 19:01	1
p-Terphenyl-d14 (Surr)	98		47 - 130	07/02/24 12:40	07/03/24 19:01	1
2,4,6-Tribromophenol (Surr)	115		35 - 130	07/02/24 12:40	07/03/24 19:01	1

Method: EPA 608.3 - Organochlorine F	Pesticides/PCBs in Water
--------------------------------------	--------------------------

A	nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Dieldrin	ND	*+	0.000052	0.000018	mg/L		07/02/24 22:42	07/03/24 14:47	1
s	Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Ľ	OCB Decachlorobiphenyl (Surr)	24	S1-	45 - 115				07/02/24 22:42	07/03/24 14:47	1
7	etrachloro-m-xylene	138	S1+	41 - 110				07/02/24 22:42	07/03/24 14:47	1

Method: SW846 8081B_LL - Organochlorine Pesticides (GC)

Analyte Dieldrin	Result	Qualifier *+	RL 0.000010	MDL 0.0000000	Unit ma/L	<u>D</u>	Prepared 07/03/24 13:50	Analyzed	Dil Fac
Diodant			0.000010	81	ilig/L		01/00/21 10:00	01/00/21 11:11	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl (Surr)	107		15 - 136				07/03/24 13:50	07/05/24 11:41	1
Tetrachloro-m-xylene	104		18 - 126				07/03/24 13:50	07/05/24 11:41	1
Method: EPA 300.0 - Anions, Ion (Chromatograp	ohy							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate	0.14		0.10	0.020	mg/L			06/28/24 11:40	1
Nitrite	ND		0.10	0.012	mg/L			06/28/24 11:40	1

Job ID: 885-7077-1

Matrix: Water

5

Lab Sample ID: 885-7077-1

Client Sample Results

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project/Site: CMC

Client Sample ID: RG-North20240626 Date Collected: 06/26/24 15:05

Date Received: 06/27/24 14:37

Lab Sample ID: 885-7077-1

Matrix: Water

nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
erfluorobutanoic acid (PFBA)	ND		14	3.4	ng/L		07/15/24 11:26	07/16/24 19:22	1
erfluoropentanoic acid (PFPeA)	ND		6.8	1.7	ng/L		07/15/24 11:26	07/16/24 19:22	1
erfluorohexanoic acid (PFHxA)	ND		3.4	0.85	ng/L		07/15/24 11:26	07/16/24 19:22	1
erfluoroheptanoic acid (PFHpA)	1.5	J	3.4	0.85	ng/L		07/15/24 11:26	07/16/24 19:22	1
erfluorooctanoic acid (PFOA)	ND	-	3.4		ng/L		07/15/24 11:26	07/16/24 19:22	1
erfluorononanoic acid (PFNA)	ND		3.4		ng/L		07/15/24 11:26	07/16/24 19:22	1
erfluorodecanoic acid (PFDA)	ND		3.4		ng/L		07/15/24 11:26	07/16/24 19:22	· · · · · · · · · · · · · · · · · · ·
erfluoroundecanoic acid (PFUnA)	ND		3.4		ng/L		07/15/24 11:26	07/16/24 19:22	. 1
erfluorododecanoic acid (PFDoA)	ND		3.4		ng/L		07/15/24 11:26	07/16/24 19:22	1
	ND		3.4				07/15/24 11:26	07/16/24 19:22	
erfluorotridecanoic acid (PFTrDA)					ng/L				1
erfluorotetradecanoic acid (PFTeDA)	ND		3.4		ng/L		07/15/24 11:26	07/16/24 19:22	1
erfluoropentanesulfonic acid FPeS)	ND		3.4	0.85	ng/L		07/15/24 11:26	07/16/24 19:22	1
erfluorohexanesulfonic acid (PFHxS)	(ND)		3.4	0.85	ng/L		07/15/24 11:26	07/16/24 19:22	1
erfluoroheptanesulfonic acid FHpS)	ND		3.4	0.85	ng/L		07/15/24 11:26	07/16/24 19:22	1
erfluorooctanesulfonic acid FOS)	<mark>1.6</mark>	JI	3.4	0.85	ng/L		07/15/24 11:26	07/16/24 19:22	1
erfluorononanesulfonic acid (PFNS)	ND		3.4	0.85	ng/L		07/15/24 11:26	07/16/24 19:22	1
erfluorodecanesulfonic acid (PFDS)	ND		3.4	0.85	ng/L		07/15/24 11:26	07/16/24 19:22	1
erfluorododecanesulfonic acid	ND		3.4		ng/L		07/15/24 11:26	07/16/24 19:22	1
FDoS)									
1,1H,2H,2H-Perfluorohexane	ND		14	3.4	ng/L		07/15/24 11:26	07/16/24 19:22	1
lfonic acid (4:2 FTS) I,1H,2H,2H-Perfluorooctane sulfonic	ND		14	34	ng/L		07/15/24 11:26	07/16/24 19:22	1
id (6:2 FTS)	NB		14	0.4	ng/L		07710/24 11.20	01110/24 13.22	
I,1H,2H,2H-Perfluorodecane	ND		14	3.4	ng/L		07/15/24 11:26	07/16/24 19:22	1
lfonic acid (8:2 FTS)					5				
erfluorooctanesulfonamide (PFOSA)	ND		3.4	0.85	ng/L		07/15/24 11:26	07/16/24 19:22	1
methylperfluorooctane sulfonamide	ND		3.4	0.85	ng/L		07/15/24 11:26	07/16/24 19:22	1
MeFOSA)			.				07/15/04 44 00	07/10/01/10/00	
ethylperfluorooctane sulfonamide EtFOSA)	ND		3.4	0.85	ng/L		07/15/24 11:26	07/16/24 19:22	1
methylperfluorooctanesulfonamidoa	ND		3.4	0.85	na/L		07/15/24 11:26	07/16/24 19:22	1
tic acid (NMeFOSAA)									
ethylperfluorooctanesulfonamidoac	ND		3.4	0.85	ng/L		07/15/24 11:26	07/16/24 19:22	1
ic acid (NEtFOSAA)									
methylperfluorooctane	ND		34	8.5	ng/L		07/15/24 11:26	07/16/24 19:22	1
lfonamidoethanol (NMeFOSE)									
ethylperfluorooctane	ND		34	8.5	ng/L		07/15/24 11:26	07/16/24 19:22	1
Ilfonamidoethanol (NEtFOSE)			14	2.4	~~/l		07/15/04 11:00	07/16/04 10:00	1
exafluoropropylene Oxide Dimer cid (HFPO-DA)	ND		14	3.4	ng/L		07/15/24 11:26	07/16/24 19:22	1
8-Dioxa-3H-perfluorononanoic acid	ND		14	3.4	ng/L		07/15/24 11:26	07/16/24 19:22	1
DONA)									
erfluoro-3-methoxypropanoic acid FMPA)	ND		6.8	1.7	ng/L		07/15/24 11:26	07/16/24 19:22	1
erfluoro-4-methoxybutanoic acid	ND		6.8	1.7	ng/L		07/15/24 11:26	07/16/24 19:22	1
FMBA)					-				
onafluoro-3,6-dioxaheptanoic acid	ND		6.8	1.7	ng/L		07/15/24 11:26	07/16/24 19:22	1
FDHA)									
Chlorohexadecafluoro-3-oxanonan	ND		14	3.4	ng/L		07/15/24 11:26	07/16/24 19:22	1

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project/Site: CMC

Client Sample ID: RG-North20240626

Date Collected: 06/26/24 15:05 Date Received: 06/27/24 14:37

Lab Sample ID: 885-7077-1 Matrix: Water

nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Chloroeicosafluoro-3-oxaundecan	ND		14		ng/L		07/15/24 11:26	07/16/24 19:22	1
-1-sulfonic acid (11CI-PF3OUdS)					5				
erfluoro (2-ethoxyethane) sulfonic cid (PFEESA)	ND		6.8	1.7	ng/L		07/15/24 11:26	07/16/24 19:22	1
-Perfluoropropylpropanoic acid (3:3 TCA)	ND		17	4.3	ng/L		07/15/24 11:26	07/16/24 19:22	1
-Perfluoropentylpropanoic acid (5:3 TCA)	ND		85	21	ng/L		07/15/24 11:26	07/16/24 19:22	1
-Perfluoroheptylpropanoic acid (7:3 TCA)	ND		85	21	ng/L		07/15/24 11:26	07/16/24 19:22	1
sotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
3C4 PFBA		quaimer	5 - 130				07/15/24 11:26	07/16/24 19:22	1
3C5 PFPeA	95.3		40 - 130				07/15/24 11:26	07/16/24 19:22	1
3C5 PFHxA	95.5 85.5		40 - 130 40 - 130				07/15/24 11:26	07/16/24 19:22	1
3C4 PFHpA	104		40 - 130				07/15/24 11:26	07/16/24 19:22	
3C8 PFOA	96.2		40 - 130 40 - 130				07/15/24 11:26	07/16/24 19:22	1
3C9 PFNA	90.2 88.0		40 - 130 40 - 130				07/15/24 11:26	07/16/24 19:22	1
3C6 PFDA	96.9		40 - 130				07/15/24 11:26	07/16/24 19:22	
3C7 PFUnA	96.9 84.5		40 - 130 30 - 130				07/15/24 11:26	07/16/24 19:22	1
3C2 PFDoA	86.7		30 - 130 10 - 130				07/15/24 11:26	07/16/24 19:22	1
3C2 PFTeDA	67.2		10 - 130				07/15/24 11:26	07/16/24 19:22	
3C3 PFHxS	78.0		40 - 130				07/15/24 11:26	07/16/24 19:22	1
3C8 PFOS	98.1		40 - 130 40 - 130				07/15/24 11:26	07/16/24 19:22	1
3C8 PFOSA	98.1 89.4		40 - 130				07/15/24 11:26	07/16/24 19:22	
								07/16/24 19:22	1
3-NMeFOSAA	106 104		40 - 170 25 - 125				07/15/24 11:26	07/16/24 19:22	1
/5-NEtFOSAA 3C2 4:2 FTS	99.5		25 - 135 40 - 200				07/15/24 11:26 07/15/24 11:26	07/16/24 19:22	1
3C2 4:2 FTS 3C2 6:2 FTS	99.5 116		40 - 200 40 - 200				07/15/24 11:26	07/16/24 19:22	1
3C2 8:2 FTS	101		40 - 200 40 - 300				07/15/24 11:26	07/16/24 19:22	1
3C3 HFPO-DA			40 - 300					07/16/24 19:22	
	85.6						07/15/24 11:26		1
7-N-MeFOSE-M	68.6 66.5		10 - 130 10 - 130				07/15/24 11:26	07/16/24 19:22 07/16/24 19:22	1
19-N-EtFOSE-M			10 - 130				07/15/24 11:26		
15-NEtPFOSA	68.4		10 - 130 10 - 130				07/15/24 11:26	07/16/24 19:22	1
3-NMePFOSA	70.3		10 - 130				07/15/24 11:26	07/16/24 19:22	1
Method: EPA Draft-4 1633 - Per- Analyte	-	alkyl Subst Qualifier	ances by LC/MS RL		RA Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanesulfonic acid PFBS)	0.89		3.4		ng/L		07/15/24 11:26	07/17/24 15:03	1
sotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
•									1
13C3 PFBS	71.5		40 - 135				07/15/24 11:26	07/17/24 15:03	1
Method: EPA 1668A - Chlorinate		Igeners (HR Qualifier		MDI	Unit	D	Droparad	Analuzed	Dil Foc
nalyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
CB-1	ND		21		pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-2	ND		210		pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-3	ND		62		pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-4	ND		41		pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-5	ND		210		pg/L		07/08/24 12:40	07/12/24 04:49	1
°CB-6	ND		210		pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-7	ND		210	19	pg/L		07/08/24 12:40	07/12/24 04:49	1

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project/Site: CMC

Client Sample ID: RG-North20240626 Date Collected: 06/26/24 15:05

Date Received: 06/27/24 14:37

Lab Sample ID: 885-7077-1 Matrix: Water

Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
PCB-8	ND		210	27			07/08/24 12:40	07/12/24 04:49	1
PCB-9	ND		210	13	pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-10	ND		210	16	pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-11	ND		210	150	pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-12	ND		410	31	pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-13	ND		410	31	pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-14	ND		210	72	pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-15	ND		41	22	pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-16	ND		210	7.0	pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-17	ND		210	15	pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-18	ND		410	15	pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-19	ND		21	9.6	pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-20	ND		410	21	pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-21	ND		410	15	pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-22	ND		210	7.5	pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-23	ND		210	8.2	pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-24	ND		210	9.9	pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-25	ND		210	14	pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-26	ND		410	9.6	pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-27	ND		210		pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-28	ND		410		pg/L		07/08/24 12:40	07/12/24 04:49	
CB-29	ND		410		pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-30	ND		410		pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-31	ND		210		pg/L		07/08/24 12:40	07/12/24 04:49	· · · · · · · · · · · · · · · · · · ·
CB-32	ND		210		pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-33	ND		410		pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-34	ND		210		pg/L		07/08/24 12:40	07/12/24 04:49	
CB-34 CB-35	ND		210				07/08/24 12:40	07/12/24 04:49	1
CB-36	ND				pg/L				1
CB-30	ND		210		pg/L		07/08/24 12:40	07/12/24 04:49	
			21		pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-38	ND		210		pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-39	ND		210		pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-40	ND		410		pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-41	ND		210		pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-42	ND		210		pg/L		07/08/24 12:40	07/12/24 04:49	
CB-43	ND		210		pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-44	ND		620		pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-45	ND		410	7.9	pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-46	ND		210		pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-47	ND		620	36	pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-48	ND		210	10	pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-49	ND		410	14	pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-50	ND		410	11	pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-51	ND		410	8.0	pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-52	ND		210	25	pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-53	ND		410	11	pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-54	ND		21		pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-55	ND		210		pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-56	ND		210		pg/L		07/08/24 12:40	07/12/24 04:49	1

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project/Site: CMC

Client Sample ID: RG-North20240626 Date Collected: 06/26/24 15:05

Date Received: 06/27/24 14:37

Lab Sample ID: 885-7077-1 Matrix: Water

Analyte	Result	Qualifier I	RL MDI	Unit	D	Prepared	Analyzed	Dil Fac
PCB-57	ND	2	10 1:	B pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-58	ND	2	10 16	6 pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-59	ND	6	20 13	3 pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-60	ND	2	10 9.7	7 pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-61	ND	8	20 20) pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-62	ND	6	20 13	3 pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-63	ND	2) pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-64	ND	2	10 9.6	6 pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-65	ND	6		b pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-66	ND	2		l pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-67	ND	2		3 pg/L		07/08/24 12:40	07/12/24 04:49	
PCB-68	ND			1 pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-69	ND	4		1 pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-70	ND) pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-71	ND			2 pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-72	ND			1 pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-73	ND			1 pg/L		07/08/24 12:40	07/12/24 04:49	
PCB-74	ND) pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-75	ND			3 pg/L		07/08/24 12:40	07/12/24 04:49	1
°CB-76	ND) pg/L		07/08/24 12:40	07/12/24 04:49	
°CB-77	ND			7 pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-78	ND			5 pg/L		07/08/24 12:40	07/12/24 04:49	1
°CB-79	ND			3 pg/L		07/08/24 12:40	07/12/24 04:49	
PCB-80	ND			3 pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-81	ND			7 pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-82	ND					07/08/24 12:40	07/12/24 04:49	
PCB-83	ND			B pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-84	ND			b pg/L		07/08/24 12:40	07/12/24 04:49	1
) pg/L				
PCB-85	ND			7 pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-86	ND	12) pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-87	ND	12) pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-88	ND			2 pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-89	ND			5 pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-90	ND			7 pg/L		07/08/24 12:40	07/12/24 04:49	
PCB-91	ND			2 pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-92	ND			2 pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-93	ND			l pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-94	ND			l pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-95	ND			2 pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-96	ND			6 pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-97	ND	12) pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-98	ND			1 pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-99	ND	4	10 8.2	2 pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-100	ND	4		l pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-101	ND	6	20 17	7 pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-102	ND	4	10 14	1 pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-103	ND	2	10 8.9	9 pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-104	ND		21 13	3 pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-105	ND		21 9.5	5 pg/L		07/08/24 12:40	07/12/24 04:49	1

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project/Site: CMC

Client Sample ID: RG-North20240626 Date Collected: 06/26/24 15:05

Date Received: 06/27/24 14:37

Lab Sample ID: 885-7077-1

Matrix: Water

Analyte	Result	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-106	ND	210	8.5	pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-107	ND	210	14	pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-108	ND	410	30	pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-109	ND	1200	5.1	pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-110	ND	410	14	pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-111	ND	210	8.9	pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-112	ND	210	6.4	pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-113	ND	620	17	pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-114	ND	21	7.9	pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-115	ND	410	14	pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-116	ND	620		pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-117	ND	620		pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-118	ND	21		pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-119	ND	1200		pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-120	ND	210		pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-121	ND	210		pg/L		07/08/24 12:40	07/12/24 04:49	
2CB-122	ND	210		pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-123	ND	21		pg/L		07/08/24 12:40	07/12/24 04:49	1
°CB-124	ND	410		pg/L		07/08/24 12:40	07/12/24 04:49	
CB-125	ND	1200		pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-125	ND	21				07/08/24 12:40	07/12/24 04:49	1
CB-120 CB-127	ND	210		pg/L		07/08/24 12:40	07/12/24 04:49	
				pg/L				1
PCB-128	ND	410		pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-129	ND	820		pg/L		07/08/24 12:40	07/12/24 04:49	
PCB-130	ND	210		pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-131	ND	210		pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-132	ND	210		pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-133	ND	210		pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-134	ND	410		pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-135	ND	410		pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-136	ND	210	6.3	pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-137	ND	210	12	pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-138	ND	820		pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-139	ND	410	9.6	pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-140	ND	410	9.6	pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-141	ND	210	7.4	pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-142	ND	210	13	pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-143	ND	410	15	pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-144	ND	210	6.3	pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-145	ND	210	14	pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-146	ND	210	7.3	pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-147	ND	410	9.6	pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-148	ND	210	6.8	pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-149	ND	410		pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-150	ND	210		pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-151	ND	410		pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-152	ND	210		pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-153	ND	410		pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-154	ND	210		pg/L		07/08/24 12:40	07/12/24 04:49	· · · · · · · · · · · · · · · · · · ·

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project/Site: CMC

Client Sample ID: RG-North20240626 Date Collected: 06/26/24 15:05

Date Received: 06/27/24 14:37

Lab Sample ID: 885-7077-1

Matrix: Water

Analyte	nlorinated Biphenyl Cor Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
PCB-155	ND		21	14	pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-156	ND		41	14	pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-157	ND		41	14	pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-158	ND		210	11	pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-159	ND		210	15	pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-160	ND		820		pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-161	ND		210	15			07/08/24 12:40	07/12/24 04:49	1
CB-162	ND		210		pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-163	ND		820		pg/L		07/08/24 12:40	07/12/24 04:49	
CB-164	ND		210		pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-165	ND		210		pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-166	ND		410		pg/L		07/08/24 12:40	07/12/24 04:49	
CB-167	ND		21		pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-168	ND		410		pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-169	ND		21		pg/L		07/08/24 12:40	07/12/24 04:49	
CB-170	ND		210		pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-170	ND		410		pg/∟ pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-171 CB-172	ND		210		pg/∟ pg/L		07/08/24 12:40	07/12/24 04:49	
CB-172 CB-173	ND		410		pg/∟ pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-173 CB-174	ND		210				07/08/24 12:40	07/12/24 04:49	1
					pg/L				
CB-175	ND		210		pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-176	ND		210		pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-177	ND		210		pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-178	ND		210		pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-179	ND		210		pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-180	ND		410		pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-181	ND		210		pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-182	ND		210	15	pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-183	ND		210	15	pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-184	ND		210	14	pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-185	ND		210	12	pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-186	ND		210	16	pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-187	ND		210	19	pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-188	ND		21	10	pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-189	ND		21	16	pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-190	ND		210	15	pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-191	ND		210	20	pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-192	ND		210		pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-193	ND		410		pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-194	ND		210		pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-195	ND		210		pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-196	ND		210		pg/L		07/08/24 12:40	07/12/24 04:49	
CB-197	ND		210		pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-198	ND		410		pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-199	ND		410		pg/L		07/08/24 12:40	07/12/24 04:49	
CB-200	ND		210		pg/L		07/08/24 12:40	07/12/24 04:49	1
CB-200 CB-201	ND						07/08/24 12:40	07/12/24 04:49	1
			210		pg/L				
CB-202 CB-203	ND ND		21 210	12	pg/L		07/08/24 12:40 07/08/24 12:40	07/12/24 04:49 07/12/24 04:49	1

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project/Site: CMC

Client Sample ID: RG-North20240626 Date Collected: 06/26/24 15:05

Date Received: 06/27/24 14:37

Lab Sample ID: 885-7077-1 Matrix: Water

nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-204	ND		210	13	pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-205	ND		21	15	pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-206	ND		21		pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-207	ND		210	5.6	pg/L		07/08/24 12:40	07/12/24 04:49	1
PCB-208	ND		21		pg/L		07/08/24 12:40	07/12/24 04:49	,
PCB-209	ND		21		pg/L		07/08/24 12:40	07/12/24 04:49	
sotope Dilution	%Recovery	Qualifier	Limits		10		Prepared	Analyzed	Dil Fa
PCB-1L	70	quanter	15 - 150				07/08/24 12:40	07/12/24 04:49	Dirta
°CB-3L	72		15 - 150				07/08/24 12:40	07/12/24 04:49	
2CB-4L	66		25 ₋ 150				07/08/24 12:40	07/12/24 04:49	
2CB-15L	76		25 - 150				07/08/24 12:40	07/12/24 04:49	,
2CB-19L	76		25 - 150 25 - 150				07/08/24 12:40	07/12/24 04:49	
PCB-37L	67		25 - 150 25 - 150				07/08/24 12:40	07/12/24 04:49	
2CB-57L			25 - 150 25 - 150						
	57						07/08/24 12:40	07/12/24 04:49 07/12/24 04:49	
PCB-77L	76 74		25 - 150 25 - 150				07/08/24 12:40	07/12/24 04:49	
PCB-81L	74		25 - 150				07/08/24 12:40	07/12/24 04:49	
PCB-104L	52		25 - 150				07/08/24 12:40	07/12/24 04:49	
PCB-105L	73		25 - 150				07/08/24 12:40	07/12/24 04:49	
PCB-114L	72		25 - 150				07/08/24 12:40	07/12/24 04:49	
PCB-118L	73		25 - 150				07/08/24 12:40	07/12/24 04:49	
PCB-123L	72		25 - 150				07/08/24 12:40	07/12/24 04:49	
PCB-126L	77		25 - 150				07/08/24 12:40	07/12/24 04:49	
PCB-155L	59		25 - 150				07/08/24 12:40	07/12/24 04:49	
PCB-156L	96		25 - 150				07/08/24 12:40	07/12/24 04:49	
PCB-156L/157L	96		25 - 150				07/08/24 12:40	07/12/24 04:49	
PCB-157L	96		25 - 150				07/08/24 12:40	07/12/24 04:49	
PCB-167L	93		25 - 150				07/08/24 12:40	07/12/24 04:49	
PCB-169L	96		25 - 150				07/08/24 12:40	07/12/24 04:49	
PCB-188L	55		25 - 150				07/08/24 12:40	07/12/24 04:49	
PCB-189L	73		25 _ 150				07/08/24 12:40	07/12/24 04:49	
PCB-202L	65		25 _ 150				07/08/24 12:40	07/12/24 04:49	
PCB-205L	79		25 - 150				07/08/24 12:40	07/12/24 04:49	
PCB-206L	74		25 - 150				07/08/24 12:40	07/12/24 04:49	1
PCB-208L	65		25 - 150				07/08/24 12:40	07/12/24 04:49	
PCB-209L	71		25 - 150				07/08/24 12:40	07/12/24 04:49	
urrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2CB-28L	68		30 - 135				07/08/24 12:40	07/12/24 04:49	
PCB-111L	75		30 - 135				07/08/24 12:40	07/12/24 04:49	·
PCB-178L	85		30 - 135				07/08/24 12:40	07/12/24 04:49	
Anthody EDA 200 7 Days 4.4		Deecourt							
Iethod: EPA 200.7 Rev 4.4 - Meta malyte		I Recoverat Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
		Quainter		0.053		<u> </u>	<u> </u>		
	33						07/02/24 13:43	07/10/24 15:01 07/08/24 12:07	
lagnesium	6.4		1.0	0.033	ing/L		07/02/24 13:43	07/00/24 12:07	
/lethod: EPA 200.8 - Metals (ICP/I	VIS)								
nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa

lient: Albuquerque Metropo roject/Site: CMC	olitan Arr	royo Flood Cor	trol Author	ity						Job ID: 885	-7077-1
lient Sample ID: RG-I ate Collected: 06/26/24 15 ate Received: 06/27/24 14	<mark>5:05</mark>	0240626							Lab San	nple ID: 885-7 Matrix	-7077-1 x: Water
Method: EPA 200.8 - Meta											
Analyte	15 (1017.		Qualifier	RL	MD	L Unit	ł	D	Prepared	Analyzed	Dil Fac
Lead		ND		0.00050	0.000083					07/09/24 10:31	1
Copper		0.00095		0.00050		2 mg/L				07/09/24 10:31	1
Method: SM 2340B - Total	l Hardne	ess (as CaCO?	3) by calcu	lation - Total F	Recoverat	le					
Analyte			Qualifier	RL		L Unit	í	D	Prepared	Analyzed	Dil Fac
Hardness as calcium carbonat	te	110		6.6	2.!	5 mg/L	-			07/09/24 15:25	1
General Chemistry											
Analyte			Qualifier	RL		L Unit		D	Prepared	Analyzed	Dil Fac
HEM (Oil & Grease) (1664B)		ND		5.0		4 mg/L				07/08/24 09:19	1
Total Dissolved Solids (SM 254	· ·	250		50		5 mg/L				07/02/24 14:21	1
Nitrogen, Total Kjeldahl (EPA 351.2)		0.60		0.50	0.50	0 mg/L	-		07/08/24 11:40	07/09/24 13:01	1
Total Phosphorus as P (EPA 3)	65.1)	0.13		0.050	0.05	0 mg/L	L		07/11/24 08:30	07/16/24 09:30	1
Chemical Oxygen Demand (SM 5220D)	,	ND		50		0 mg/L				07/09/24 14:14	1
Total Suspended Solids (SM		58		4.0	4./	0 mg/L	-			07/02/24 16:35	1
2540D) pH (SM 4500 H+ B)		<u>8</u> 1	HF	0.1	0	1 SU				07/09/24 22:21	
Biochemical Oxygen Demand (SM5210B)			HF *- b	2.0		1 SU 0 mg/L	-			06/28/24 11:05	1
General Chemistry - Diss	olved										
Analyte		Result	Qualifier	RL	MD	L Unit	ι	D	Prepared	Analyzed	Dil Fac
Total Phosphorus as P (EPA 30	65.1)	0.055		0.050	0.05	0 mg/L	-		07/11/24 08:30	07/16/24 09:32	1
Method: EPA 900.0 - Gros	ss Alpha	a and Gross B	eta Radioa	ctivity							
			Count	Total							
			Uncert.	Uncert.							
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit		Prepared	Analyzed	Dil Fac
Gross Alpha	6.25	G	2.76	2.85	3.00	3.55	pCi/L		07/03/24 08:58	07/18/24 17:21	1
Gross Beta	5.30		1.17	1.28	4.00	1.26	pCi/L		07/03/24 08:58	07/18/24 17:21	1
Method: SM Gross Alpha	Adj - Gr	ross Alpha Ad	justed								
			Count	Total							
			Uncert.	Uncert.							
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit		Prepared	Analyzed	Dil Fac
Adjusted Gross	5.25				3.00	3 55	pCi/L			07/19/24 14:39	1

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project/Site: CMC

Client Sample ID: RG-South20240627

Date Collected: 06/27/24 13:10 Date Received: 06/27/24 14:37

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrahydrofuran	ND	Н	0.010	0.0018	mg/L			07/03/24 03:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		63 - 144					07/03/24 03:08	1
4-Bromofluorobenzene (Surr)	105		74 - 124					07/03/24 03:08	1
Dibromofluoromethane (Surr)	105		75 - 131					07/03/24 03:08	1
Toluene-d8 (Surr)	102		80 - 120					07/03/24 03:08	1

Method: EPA 625.1 - Semivolatile Organic Compounds (GC-MS/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Benzidine	ND		1.1	0.090	ug/L		07/02/24 12:40	07/05/24 15:46	1	
Benzo[a]anthracene	ND	*+	0.11	0.0095	ug/L		07/02/24 12:40	07/05/24 15:46	1	
Benzo[b]fluoranthene	ND	*+	0.57	0.066	ug/L		07/02/24 12:40	07/05/24 15:46	1	
Bis(2-ethylhexyl) phthalate	ND	*+	2.8	1.4	ug/L		07/02/24 12:40	07/05/24 15:46	1	
Chrysene	ND	*+	0.57	0.081	ug/L		07/02/24 12:40	07/05/24 15:46	1	
Dibenz(a,h)anthracene	ND		0.11	0.051	ug/L		07/02/24 12:40	07/05/24 15:46	1	
Dibenzofuran	ND		0.57	0.11	ug/L		07/02/24 12:40	07/05/24 15:46	1	
Indeno[1,2,3-cd]pyrene	ND		0.57	0.10	ug/L		07/02/24 12:40	07/05/24 15:46	1	
Pentachlorophenol	ND		1.1	1.0	ug/L		07/02/24 12:40	07/05/24 15:46	1	
Benzo[k]fluoranthene	ND	*+	0.57	0.047	ug/L		07/02/24 12:40	07/05/24 15:46	1	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	123		43 - 130	07/02/24 12:40	07/05/24 15:46	1
2-Fluorophenol (Surr)	87		19 _ 120	07/02/24 12:40	07/05/24 15:46	1
Nitrobenzene-d5 (Surr)	144	S1+	37 - 133	07/02/24 12:40	07/05/24 15:46	1
Phenol-d5 (Surr)	61		8 - 124	07/02/24 12:40	07/05/24 15:46	1
p-Terphenyl-d14 (Surr)	89		47 _ 130	07/02/24 12:40	07/05/24 15:46	1
2,4,6-Tribromophenol (Surr)	153	S1+	35 - 130	07/02/24 12:40	07/05/24 15:46	1

Method: EPA 608.3 - Organochlorine Pesticides/PCBs in Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dieldrin	ND	*+	0.000053	0.000018	mg/L		07/02/24 22:42	07/03/24 14:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Surrogate DCB Decachlorobiphenyl (Surr)		Qualifier S1-	Limits 45 - 115				Prepared 07/02/24 22:42	Analyzed 07/03/24 14:58	Dil Fac

Method: SW846 8081B_LL - Organochlorine Pesticides (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dieldrin	ND	*+	0.000010	0.0000000	mg/L		07/03/24 13:50	07/05/24 12:10	1
				81					
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl (Surr)	103		15 _ 136				07/03/24 13:50	07/05/24 12:10	1
Tetrachloro-m-xylene	111		18 - 126				07/03/24 13:50	07/05/24 12:10	1
Method: EPA 300.0 - Anions, Ion C	hromatograp	ohy							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate	0.62		0.10	0.020	mg/L			06/28/24 12:29	1
Nitrite	ND		0.10	0.012	mg/L			06/28/24 12:29	1

Job ID: 885-7077-1

Lab Sample ID: 885-7077-2 Matrix: Water

5

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project/Site: CMC

Client Sample ID: RG-South20240627

Date Collected: 06/27/24 13:10 Date Received: 06/27/24 14:37

Lab Sample ID: 885-7077-2

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Perfluorobutanoic acid (PFBA)	3.8	J	12	3.0	ng/L		07/15/24 11:26	07/16/24 19:39	1	
Perfluoropentanoic acid (PFPeA)	3.1	J	6.1	1.5	ng/L		07/15/24 11:26	07/16/24 19:39	1	
Perfluorohexanoic acid (PFHxA)	2.2	J	3.0	0.76	ng/L		07/15/24 11:26	07/16/24 19:39	1	
Perfluoroheptanoic acid (PFHpA)	ND		3.0	0.76	ng/L		07/15/24 11:26	07/16/24 19:39	1	
Perfluorooctanoic acid (PFOA)	1.5	J	3.0	0.76	ng/L		07/15/24 11:26	07/16/24 19:39	1	
Perfluorononanoic acid (PFNA)	1.0		3.0	0.76	ng/L		07/15/24 11:26	07/16/24 19:39	1	
Perfluorodecanoic acid (PFDA)	ND		3.0		ng/L		07/15/24 11:26	07/16/24 19:39	1	
Perfluoroundecanoic acid (PFUnA)	ND		3.0		ng/L		07/15/24 11:26	07/16/24 19:39	1	
Perfluorododecanoic acid (PFDoA)	ND		3.0		ng/L		07/15/24 11:26	07/16/24 19:39	1	
Perfluorotridecanoic acid (PFTrDA)	ND		3.0		ng/L		07/15/24 11:26	07/16/24 19:39		
Perfluorotetradecanoic acid (PFTeDA)	ND		3.0		ng/L		07/15/24 11:26	07/16/24 19:39	1	
	ND		3.0		-				1	
Perfluoropentanesulfonic acid (PFPeS)	ND		3.0	0.70	ng/L		07/15/24 11:26	07/16/24 19:39	1	
Perfluorohexanesulfonic acid (PFHxS)	ND		3.0	0.76	ng/L		07/15/24 11:26	07/16/24 19:39	1	
Perfluoroheptanesulfonic acid	ND		3.0	0.76	ng/L		07/15/24 11:26	07/16/24 19:39	1	
(PFHpS)					0					
Perfluorooctanesulfonic acid (PFOS)	1.6	JI	3.0	0.76	ng/L		07/15/24 11:26	07/16/24 19:39	1	
Perfluorononanesulfonic acid (PFNS)	ND		3.0	0.76	ng/L		07/15/24 11:26	07/16/24 19:39	1	÷,
Perfluorodecanesulfonic acid (PFDS)	ND		3.0	0.76	ng/L		07/15/24 11:26	07/16/24 19:39	1	
Perfluorododecanesulfonic acid	ND		3.0	0.76	ng/L		07/15/24 11:26	07/16/24 19:39	1	
PFDoS)					0					
1H,1H,2H,2H-Perfluorohexane	ND		12	3.0	ng/L		07/15/24 11:26	07/16/24 19:39	1	
sulfonic acid (4:2 FTS)										
IH,1H,2H,2H-Perfluorooctane sulfonic acid (6:2 FTS)	ND		12	3.0	ng/L		07/15/24 11:26	07/16/24 19:39	1	
1H,1H,2H,2H-Perfluorodecane	ND		12	3.0	ng/L		07/15/24 11:26	07/16/24 19:39	1	
sulfonic acid (8:2 FTS)										
Perfluorooctanesulfonamide (PFOSA)	ND		3.0	0.76	ng/L		07/15/24 11:26	07/16/24 19:39	1	
N-methylperfluorooctane sulfonamide (NMeFOSA)	ND		3.0	0.76	ng/L		07/15/24 11:26	07/16/24 19:39	1	
N-ethylperfluorooctane sulfonamide (NEtFOSA)	ND		3.0	0.76	ng/L		07/15/24 11:26	07/16/24 19:39	1	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		3.0	0.76	ng/L		07/15/24 11:26	07/16/24 19:39	1	
N-ethylperfluorooctanesulfonamidoac	ND		3.0	0.76	ng/L		07/15/24 11:26	07/16/24 19:39	1	
etic acid (NEtFOSAA)	ND		30	7.6	ng/L		07/15/24 11:26	07/16/24 19:39	1	
N-methylperfluorooctane sulfonamidoethanol (NMeFOSE)	ND		30	7.0	lig/∟		07/15/24 11.20	07/10/24 19:39	I	
I-ethylperfluorooctane ulfonamidoethanol (NEtFOSE)	ND		30	7.6	ng/L		07/15/24 11:26	07/16/24 19:39	1	
lexafluoropropylene Oxide Dimer	ND		12	3.0	ng/L		07/15/24 11:26	07/16/24 19:39	1	
Acid (HFPO-DA)				0.0			0171072111120	01710721101000		
,8-Dioxa-3H-perfluorononanoic acid	ND		12	3.0	ng/L		07/15/24 11:26	07/16/24 19:39	1	
ADONA)					0					
Perfluoro-3-methoxypropanoic acid	ND		6.1	1.5	ng/L		07/15/24 11:26	07/16/24 19:39	1	
PFMPA)										
Perfluoro-4-methoxybutanoic acid	ND		6.1	1.5	ng/L		07/15/24 11:26	07/16/24 19:39	1	
(PFMBA)										
Nonafluoro-3,6-dioxaheptanoic acid	ND		6.1	1.5	ng/L		07/15/24 11:26	07/16/24 19:39	1	
(NFDHA)			40		ng/l		07/46/04 44:00	07/46/04 40:00		
)-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid(9CI-PF3ONS)	ND		12	3.0	ng/L		07/15/24 11:26	07/16/24 19:39	1	

e-1-sulfonic acid(9CI-PF3ONS)

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project/Site: CMC

Client Sample ID: RG-South20240627

Date Collected: 06/27/24 13:10 Date Received: 06/27/24 14:37

Lab Sample ID: 885-7077-2 Matrix: Water

ND		12	3.0	ng/L		07/15/24 11:26	07/16/24 19:39	1
ND		6.1	1.5	ng/L		07/15/24 11:26	07/16/24 19:39	1
ND		15	3.8	ng/L		07/15/24 11:26	07/16/24 19:39	1
ND		76	19	ng/L		07/15/24 11:26	07/16/24 19:39	1
ND		76	19	ng/L		07/15/24 11:26	07/16/24 19:39	1
%Recovery	Qualifier	l imits				Prenared	Analyzod	Dil Fac
	quanner							1
								1
								1
96.8		40 - 130				07/15/24 11:26	07/16/24 19:39	1
87.6		40 - 130				07/15/24 11:26	07/16/24 19:39	1
94.3		30 - 130				07/15/24 11:26	07/16/24 19:39	1
86.3		10 - 130				07/15/24 11:26	07/16/24 19:39	1
71.2		10 - 130				07/15/24 11:26	07/16/24 19:39	1
82.6		40 - 130				07/15/24 11:26	07/16/24 19:39	1
105		40 - 130				07/15/24 11:26	07/16/24 19:39	1
94.1		40 - 130				07/15/24 11:26	07/16/24 19:39	1
104		40 - 170				07/15/24 11:26	07/16/24 19:39	1
111		25 - 135				07/15/24 11:26	07/16/24 19:39	1
99.0		40 - 200				07/15/24 11:26	07/16/24 19:39	1
117		40 - 200				07/15/24 11:26	07/16/24 19:39	1
107		40 - 300				07/15/24 11:26	07/16/24 19:39	1
93.1		40 - 130				07/15/24 11:26	07/16/24 19:39	1
66.7		10 - 130				07/15/24 11:26	07/16/24 19:39	1
63.5		10 - 130				07/15/24 11:26	07/16/24 19:39	1
65.1		10 - 130				07/15/24 11:26	07/16/24 19:39	1
67.6		10 - 130				07/15/24 11:26	07/16/24 19:39	1
and Polyfluoro	alkyl Subst	ances by LC/M	S/MS - I	RA				
	Qualifier	RL			D	Prepared	Analyzed	Dil Fac
4.1		3.0	0.76	ng/L		07/15/24 11:26	07/17/24 15:21	1
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
78.6		40 - 135				07/15/24 11:26	07/17/24 15:21	1
				11-21	_	D	A	
	Qualitier				D		-	Dil Fac
								1
								1
								1
								1
		210	26	pg/L		07/08/24 12:40	07/12/24 05:52	1
ND		210		pg/L		07/08/24 12:40	07/12/24 05:52	
	ND ND ND <u>%Recovery</u> 95.6 102 96.9 110 96.8 87.6 94.8 94.3 86.3 71.2 82.6 105 94.1 104 111 99.0 117 107 93.1 66.7 63.5 65.1 67.6 and Polyfluoro Result 4.1 % <i>Recovery</i> 78.6 d Biphenyl Cor	ND %Recovery Qualifier 95.6 102 96.9 110 96.8 87.6 94.8 94.3 94.3 86.3 71.2 82.6 105 94.1 104 111 99.0 117 107 93.1 66.7 63.5 65.1 67.6 and Polyfluoroalkyl Subst Result Qualifier 78.6 Qualifier ND ND ND ND ND ND ND ND ND ND	ND 15 ND 76 ND 76 ND 76 ND 76 ND 76 ND 76 %Recovery Qualifier Limits 95.6 5.130 102 40.130 96.9 40.130 96.8 40.130 97.6 40.130 94.8 40.130 94.8 40.130 94.3 30.130 86.3 10.130 71.2 10.130 82.6 40.130 105 40.130 104 40.130 105 40.200 111 25.135 99.0 40.200 107 40.300 93.1 40.130 66.7 10.130 65.1 10.130 65.1 10.130 65.1 10.130 65.1 10.130 67.6 10.	ND 15 3.8 ND 76 19 ND 76 19 ND 76 19 ND 76 19 %Recovery Qualifier Limits 95.6 5.130 102 102 40.130 96.9 96.9 40.130 96.8 97.6 40.130 94.8 94.8 40.130 94.3 94.8 40.130 94.3 94.3 30.130 82.6 40.130 94.1 40.130 105 40.130 104 105 40.130 104 40.170 111 25.135 99.0 40.200 107 40.300 93.1 40.130 66.7 10.130 65.7 10.130 65.1 10.130 65.1 10.130 67.6 10.130 67.6 10.130 <	ND 15 3.8 ng/L ND 76 19 ng/L ND 76 19 ng/L ND 76 19 ng/L %Recovery Qualifier Limits 95.6 5.130 102 40.130 96.9 40.130 96.8 40.130 94.8 40.130 94.8 40.130 94.3 30.130 86.3 10.130 71.2 10.130 105 40.130 94.1 40.130 104 40.170 111 25.135 99.0 40.200 107 40.300 93.1 40.130 65.7 10.130 65.7 10.130 65.7 10.130 65.7 10.130 65.7 10.130 65.7 10.130 65.7 10.130 65.7 10.130 65.7 10.130	ND 15 3.8 ng/L ND 76 19 ng/L ND 76 19 ng/L - %Recovery Qualifier Limits 95.6 5.130 102 40.130 96.9 40.130 96.9 40.130 96.8 40.130 96.8 40.130 96.8 40.130 96.3 10.130 96.4 40.130 94.4 40.130 94.8 40.130 94.3 30.130 86.3 10.130 82.6 40.130 94.1 40.130 105 40.130 105 40.130 104 40.170 111 25.135 199.0 40.200 107 40.300 103 65.7 10.130 66.7 10.130 65.5 10.130 65.5 10.130 65.5 10.130 10.76 ng/L D	ND 15 3.8 ng/L 07/15/24 11:26 ND 76 19 ng/L 07/15/24 11:26 ND 76 19 ng/L 07/15/24 11:26 96.6 5.130 07/15/24 11:26 07/15/24 11:26 96.9 40.130 07/15/24 11:26 07/15/24 11:26 96.8 40.130 07/15/24 11:26 07/15/24 11:26 96.8 40.130 07/15/24 11:26 07/15/24 11:26 94.8 40.130 07/15/24 11:26 07/15/24 11:26 94.3 30.130 07/15/24 11:26 07/15/24 11:26 66.3 10.130 07/15/24 11:26 07/15/24 11:26 94.1 40.130 07/15/24 11:26 07/15/24 11:26 105 40.130 07/15/24 11:26 07/15/24 11:26 94.1 40.130 07/15/24 07/15/24 11:26 <td>ND 15 3.8 ng/L 07/15/24 11:26 07/16/24 19:39 ND 76 19 ng/L 07/15/24 11:26 07/16/24 19:39 ND 76 19 ng/L 07/15/24 11:26 07/16/24 19:39 95.6 5.130 07/15/24 11:26 07/16/24 19:39 102 40.130 07/15/24 11:26 07/16/24 19:39 95.6 5.130 07/15/24 11:26 07/16/24 19:39 97.6 40.130 07/15/24 11:26 07/16/24 19:39 97.6 40.130 07/15/24 11:26 07/16/24 19:39 97.6 40.130 07/15/24 11:26 07/16/24 19:39 97.6 40.130 07/15/24 11:26 07/16/24 19:39 97.6 40.130 07/15/24 11:26 07/16/24 19:39 97.12 10.130 07/15/24 11:26 07/16/24 19:39 97.12 10.130 07/15/24 11:26 07/16/24 19:39 97.12 10.130 07/15/24 11:26 07/16/24 19:39 97.12 10.130 07/15/24 11:26 07/16/24 19:39 97.14 40.130</td>	ND 15 3.8 ng/L 07/15/24 11:26 07/16/24 19:39 ND 76 19 ng/L 07/15/24 11:26 07/16/24 19:39 ND 76 19 ng/L 07/15/24 11:26 07/16/24 19:39 95.6 5.130 07/15/24 11:26 07/16/24 19:39 102 40.130 07/15/24 11:26 07/16/24 19:39 95.6 5.130 07/15/24 11:26 07/16/24 19:39 97.6 40.130 07/15/24 11:26 07/16/24 19:39 97.6 40.130 07/15/24 11:26 07/16/24 19:39 97.6 40.130 07/15/24 11:26 07/16/24 19:39 97.6 40.130 07/15/24 11:26 07/16/24 19:39 97.6 40.130 07/15/24 11:26 07/16/24 19:39 97.12 10.130 07/15/24 11:26 07/16/24 19:39 97.12 10.130 07/15/24 11:26 07/16/24 19:39 97.12 10.130 07/15/24 11:26 07/16/24 19:39 97.12 10.130 07/15/24 11:26 07/16/24 19:39 97.14 40.130

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project/Site: CMC

Client Sample ID: RG-South20240627

Date Collected: 06/27/24 13:10 Date Received: 06/27/24 14:37

Lab Sample ID: 885-7077-2 Matrix: Water

Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
PCB-8	ND		210	27	pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-9	ND		210	13	pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-10	ND		210	16	pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-11	ND		210	150	pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-12	ND		410	32	pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-13	ND		410	32	pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-14	ND		210	73	pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-15	ND		41	22	pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-16	ND		210	7.1	pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-17	ND		210	16	pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-18	ND		410	15	pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-19	ND		21	9.7	pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-20	ND		410	22	pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-21	ND		410	15	pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-22	ND		210		pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-23	ND		210		pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-24	ND		210		pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-25	ND		210		pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-26	ND		410		pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-27	ND		210		pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-28	ND		410	22	pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-29	ND		410		pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-30	ND		410		pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-31	ND		210		pg/L		07/08/24 12:40	07/12/24 05:52	
CB-32	ND		210		pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-33	ND		410		pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-34	ND		210		pg/L		07/08/24 12:40	07/12/24 05:52	
CB-35	ND		210		pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-36	ND		210		pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-30	ND		210				07/08/24 12:40	07/12/24 05:52	
CB-38	ND				pg/L				1
			210		pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-39	ND		210		pg/L		07/08/24 12:40	07/12/24 05:52	· · · · · · · .
CB-40	ND		410		pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-41	ND		210		pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-42	ND		210		pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-43	ND		210		pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-44	ND		620		pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-45	ND		410		pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-46	ND		210		pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-47	ND		620		pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-48	ND		210	10	pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-49	ND		410	14	pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-50	ND		410	11	pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-51	ND		410	8.1	pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-52	ND		210	25	pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-53	ND		410	11	pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-54	ND		21	8.6	pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-55	ND		210	7.9	pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-56	ND		210		pg/L		07/08/24 12:40	07/12/24 05:52	1

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project/Site: CMC

Client Sample ID: RG-South20240627

Date Collected: 06/27/24 13:10 Date Received: 06/27/24 14:37

PCB-105

Lab Sample ID: 885-7077-2 Matrix: Water

r	
-	4
2	5
	6
	8
	9
	12
	13

Analyte	Result Q	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-57	ND	210		pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-58	ND	210	16			07/08/24 12:40	07/12/24 05:52	1
PCB-59	ND	620	13	pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-60	ND	210	9.9	pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-61	ND	830	20	pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-62	ND	620	13	pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-63	ND	210	10	pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-64	ND	210	9.8	pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-65	ND	620	36			07/08/24 12:40	07/12/24 05:52	1
PCB-66	ND	210	11	pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-67	ND	210	13	pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-68	ND	210		pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-69	ND	410		pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-70	ND	830		pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-71	ND	410		pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-72	ND	210		pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-73	ND	210		pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-74	ND	830	20			07/08/24 12:40	07/12/24 05:52	1
2CB-75	ND	620		pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-76	ND	830		pg/L		07/08/24 12:40	07/12/24 05:52	
CB-77	ND	21	17			07/08/24 12:40	07/12/24 05:52	1
CB-78	ND	210		pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-79	ND	210	8.4			07/08/24 12:40	07/12/24 05:52	
PCB-80	ND	210		pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-81	ND	21		pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-82	ND	210		pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-83	ND	410	9.7			07/08/24 12:40	07/12/24 05:52	1
PCB-84	ND	210	10			07/08/24 12:40	07/12/24 05:52	1
PCB-85	ND	620	17			07/08/24 12:40	07/12/24 05:52	1
°CB-86	ND	1200	30	pg/L		07/08/24 12:40	07/12/24 05:52	. 1
PCB-87	ND	1200	30	pg/L		07/08/24 12:40	07/12/24 05:52	1
°CB-88	ND	410	9.3			07/08/24 12:40	07/12/24 05:52	
°CB-89	ND	210	8.6			07/08/24 12:40	07/12/24 05:52	1
°CB-90	ND	620	17			07/08/24 12:40	07/12/24 05:52	1
°CB-91	ND	410		pg/L		07/08/24 12:40	07/12/24 05:52	
CB-92	ND	210		pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-93	ND	410		pg/L		07/08/24 12:40	07/12/24 05:52	1
°CB-94	ND	210		pg/L		07/08/24 12:40	07/12/24 05:52	
CB-95	ND	210		pg/L		07/08/24 12:40	07/12/24 05:52	1
°CB-96	ND	210		pg/L pg/L		07/08/24 12:40	07/12/24 05:52	1
°CB-97	ND	1200		pg/L		07/08/24 12:40	07/12/24 05:52	
PCB-98	ND	410		pg/L pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-99	ND	410				07/08/24 12:40	07/12/24 05:52	1
РСВ-100				pg/L		07/08/24 12:40	07/12/24 05:52	· · · · · · · · · · · · · · · · · · ·
	ND	410		pg/L				1
PCB-101	ND	620		pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-102	ND	410		pg/L		07/08/24 12:40	07/12/24 05:52	1 ۲
PCB-103	ND	210		pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-104	ND	21	14	pg/L		07/08/24 12:40	07/12/24 05:52	1

Eurofins Albuquerque

07/12/24 05:52

07/08/24 12:40

21

ND

9.6 pg/L

1

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project/Site: CMC

Client Sample ID: RG-South20240627

Date Collected: 06/27/24 13:10 Date Received: 06/27/24 14:37

Lab Sample ID: 885-7077-2 Matrix: Water

Analyte	lorinated Biphenyl Cor Result	Qualifier	RL	MDL	·	D	Prepared	Analyzed	Dil Fac
PCB-106	ND		210		pg/L	<u> </u>	07/08/24 12:40	07/12/24 05:52	1
CB-107	ND		210		pg/L		07/08/24 12:40	07/12/24 05:52	' ' 1
PCB-108	ND		410		pg/L pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-109	ND		1200		pg/L		07/08/24 12:40	07/12/24 05:52	' ' 1
PCB-110		Jq	410		pg/L pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-111	ND	JY	210				07/08/24 12:40	07/12/24 05:52	1
PCB-112	ND		210		pg/L		07/08/24 12:40	07/12/24 05:52	
PCB-112	ND		620		pg/L		07/08/24 12:40	07/12/24 05:52	1
					pg/L				1
PCB-114	ND		21		pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-115		Jq	410		pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-116	ND		620		pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-117	ND		620		pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-118		J q	21		pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-119	ND		1200		pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-120	ND		210		pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-121	ND		210		pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-122	ND		210		pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-123	ND		21	10	pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-124	ND		410		pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-125	ND		1200	30	pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-126	ND		21	14	pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-127	ND		210	15	pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-128	ND		410	10	pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-129	28	J q	830	16	pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-130	ND		210	11	pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-131	ND		210	14	pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-132	ND		210	14	pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-133	ND		210	11	pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-134	ND		410	15	pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-135	ND		410		pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-136	ND		210	6.3	pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-137	ND		210		pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-138		Jq	830		pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-139	ND		410		pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-140	ND		410		pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-141	ND		210		pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-142	ND		210		pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-143	ND		410		pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-144	ND		210		pg/L		07/08/24 12:40	07/12/24 05:52	1
°CB-145	ND		210		pg/L		07/08/24 12:40	07/12/24 05:52	1
2CB-146	ND		210		pg/L		07/08/24 12:40	07/12/24 05:52	1
		La.	410				07/08/24 12:40	07/12/24 05:52	1
CB-147		Jq			pg/L				
PCB-148	ND	1	210		pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-149		Jq	410		pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-150	ND		210		pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-151	ND		410		pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-152	ND		210	5.7	pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-153	26	J	410	9.7	pg/L		07/08/24 12:40	07/12/24 05:52	1

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project/Site: CMC

Client Sample ID: RG-South20240627

Date Collected: 06/27/24 13:10 Date Received: 06/27/24 14:37

Lab Sample ID: 885-7077-2 Matrix: Water

nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
CB-155	ND		21	14	pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-156	ND		41	14	pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-157	ND		41	14	pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-158	ND		210	12	pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-159	ND		210	15	pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-160	28	Jq	830	7.6	pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-161	ND		210	15	pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-162	ND		210	9.4	pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-163	28	Jq	830	16	pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-164	ND		210	21	pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-165	ND		210	13	pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-166	ND		410	10	pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-167	ND		21	7.9	pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-168	26	J	410	9.7	pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-169	ND		21		pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-170	ND		210		pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-171	ND		410		pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-172	ND		210		pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-173	ND		410		pg/L		07/08/24 12:40	07/12/24 05:52	1
B-174	ND		210		pg/L		07/08/24 12:40	07/12/24 05:52	1
B-175	ND		210		pg/L		07/08/24 12:40	07/12/24 05:52	1
B-176	ND		210		pg/L		07/08/24 12:40	07/12/24 05:52	1
B-177	ND		210		pg/L		07/08/24 12:40	07/12/24 05:52	1
B-178	ND		210		pg/L		07/08/24 12:40	07/12/24 05:52	
B-179	ND		210		pg/L pg/L		07/08/24 12:40	07/12/24 05:52	1
:B-180	29		410		pg/L		07/08/24 12:40	07/12/24 05:52	1
B-181	ND 29	J	210		pg/L pg/L		07/08/24 12:40	07/12/24 05:52	
CB-182	ND		210		pg/L pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-183			210					07/12/24 05:52	1
B-184	ND				pg/L		07/08/24 12:40		
	ND		210		pg/L		07/08/24 12:40	07/12/24 05:52	1
B-185	ND		210		pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-186	ND		210		pg/L		07/08/24 12:40	07/12/24 05:52	
CB-187	ND		210		pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-188	ND		21		pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-189	ND		21		pg/L		07/08/24 12:40	07/12/24 05:52	1
B-190	ND		210		pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-191	ND		210		pg/L		07/08/24 12:40	07/12/24 05:52	1
B-192	ND		210		pg/L		07/08/24 12:40	07/12/24 05:52	1
B-193	29	J	410		pg/L		07/08/24 12:40	07/12/24 05:52	1
:B-194	ND		210		pg/L		07/08/24 12:40	07/12/24 05:52	1
B-195	ND		210		pg/L		07/08/24 12:40	07/12/24 05:52	1
B-196	ND		210	16	pg/L		07/08/24 12:40	07/12/24 05:52	1
B-197	ND		210	14	pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-198	ND		410	8.1	pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-199	ND		410	8.1	pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-200	ND		210	15	pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-201	ND		210	14	pg/L		07/08/24 12:40	07/12/24 05:52	1
CB-202	ND		21	12	pg/L		07/08/24 12:40	07/12/24 05:52	1
B-203	ND		210		pg/L		07/08/24 12:40	07/12/24 05:52	1

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project/Site: CMC

Method: EPA 1668A - Chlorinated Biphenyl Congeners (HRGC/HRMS) (Continued)

Client Sample ID: RG-South20240627

Date Collected: 06/27/24 13:10 Date Received: 06/27/24 14:37

Lab Sample ID: 885-7077-2 Matrix: Water

er	
	4
ac	5
1	6
1	
1	
1	8
ac	6
1 1	3
1 1 1	
1 1	
1 1 1 1	
1	
1 1	
1	

Analyte		Qualifier	RL	MDL	1	D	Prepared	Analyzed	Dil Fac
PCB-204	ND		210	14	pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-205	ND		21	15	pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-206	ND		21	8.6	pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-207	ND		210		pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-208	ND		21		pg/L		07/08/24 12:40	07/12/24 05:52	1
PCB-209	ND		21		pg/L		07/08/24 12:40	07/12/24 05:52	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
PCB-1L	72		15 _ 150				07/08/24 12:40	07/12/24 05:52	1
PCB-3L	74		15 - 150				07/08/24 12:40	07/12/24 05:52	1
PCB-4L	65		25 - 150				07/08/24 12:40	07/12/24 05:52	1
PCB-15L	72		25 - 150				07/08/24 12:40	07/12/24 05:52	
PCB-19L	76		25 - 150				07/08/24 12:40	07/12/24 05:52	1
PCB-37L	70		25 - 150				07/08/24 12:40	07/12/24 05:52	1
PCB-54L	62		25 - 150				07/08/24 12:40	07/12/24 05:52	
PCB-77L	79		25 - 150 25 - 150				07/08/24 12:40	07/12/24 05:52	1
PCB-81L	76		25 - 150				07/08/24 12:40	07/12/24 05:52	1
PCB-104L	53		25 - 150				07/08/24 12:40	07/12/24 05:52	
PCB-104L PCB-105L	53 70		25 - 150 25 - 150				07/08/24 12:40	07/12/24 05:52	1
PCB-114L	68		25 - 150 25 - 150						1
	67						07/08/24 12:40	07/12/24 05:52	
PCB-118L PCB-123L			25 - 150 25 - 150				07/08/24 12:40	07/12/24 05:52 07/12/24 05:52	1
	68 70		25 - 150 25 - 150				07/08/24 12:40		
PCB-126L	72		25 - 150				07/08/24 12:40	07/12/24 05:52	1
PCB-155L	62		25 - 150				07/08/24 12:40	07/12/24 05:52	1
PCB-156L	96		25 - 150				07/08/24 12:40	07/12/24 05:52	1
PCB-156L/157L	96		25 - 150				07/08/24 12:40	07/12/24 05:52	
PCB-157L	96		25 - 150				07/08/24 12:40	07/12/24 05:52	1
PCB-167L	94		25 - 150				07/08/24 12:40	07/12/24 05:52	1
PCB-169L	95		25 _ 150				07/08/24 12:40	07/12/24 05:52	1
PCB-188L	53		25 - 150				07/08/24 12:40	07/12/24 05:52	1
PCB-189L	64		25 - 150				07/08/24 12:40	07/12/24 05:52	1
PCB-202L	60		25 _ 150				07/08/24 12:40	07/12/24 05:52	1
PCB-205L	72		25 - 150				07/08/24 12:40	07/12/24 05:52	1
PCB-206L	62		25 - 150				07/08/24 12:40	07/12/24 05:52	1
PCB-208L	63		25 - 150				07/08/24 12:40	07/12/24 05:52	1
PCB-209L	70		25 - 150				07/08/24 12:40	07/12/24 05:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
PCB-28L	75	<u> </u>	30 - 135				07/08/24 12:40	07/12/24 05:52	1
PCB-111L	78		30 - 135				07/08/24 12:40	07/12/24 05:52	1
PCB-178L	93		30 - 135				07/08/24 12:40	07/12/24 05:52	1
Method: EPA 200.7 Rev 4.4 - Metals						_	- ·		
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Calcium	41		1.0	0.053			07/02/24 13:43	07/10/24 15:03	1
Magnesium	8.3		1.0	0.033	mg/L		07/02/24 13:43	07/08/24 12:11	1
Method: EPA 200.8 - Metals (ICP/MS	5)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Uranium	1.6		1.0	0.15	ug/L		07/16/24 15:34	07/19/24 15:03	2

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project/Site: CMC

Job ID: 885-7077-1

Client Sample ID: RG- Date Collected: 06/27/24 1 Date Received: 06/27/24 14	3:10	0240627							Lab Sar	nple ID: 885- Matrix	7077-2 k: Water
Method: EPA 200.8 - Meta		MS) - Dissolve	ed								
Analyte			Qualifier	RL	MDL	Unit		D	Prepared	Analyzed	Dil Fac
Copper		0.010		0.00050	0.00012	mg/L	-			07/09/24 10:34	1
Lead		ND		0.00050	0.000083	mg/L	-			07/09/24 10:34	1
Method: SM 2340B - Tota	al Hardne	ess (as CaCO3) by calcu	lation - Total R	Recoverabl	е					
Analyte		Result	Qualifier	RL		Unit		D	Prepared	Analyzed	Dil Fac
Hardness as calcium carbona	ate	140		6.6	2.5	mg/L	-			07/09/24 15:25	1
General Chemistry											
Analyte			Qualifier	RL		Unit			Prepared	Analyzed	Dil Fac
HEM (Oil & Grease) (1664B)		ND		4.9		mg/L				07/08/24 09:19	1
Total Dissolved Solids (SM 25		280		100		mg/L				07/03/24 12:52	1
Nitrogen, Total Kjeldahl (EPA 351.2)		0.99		0.50	0.50	mg/L	-		07/08/24 11:40	07/09/24 13:02	1
Total Phosphorus as P (EPA 3	365.1)	0.38		0.050	0.050	mg/L	-		07/11/24 08:30	07/16/24 09:34	
Chemical Oxygen Demand (SM 5220D)		ND		50	50	mg/L	-			07/23/24 14:19	
Total Suspended Solids (SM 2540D)		160		8.0	8.0	mg/L	-			07/02/24 16:35	
pH (SM 4500 H+ B)		8.2	HF	0.1	0.1	SU				07/09/24 22:10	
Biochemical Oxygen Demand (SM5210B)		ND	*- b	2.0	2.0	mg/L	-			06/28/24 11:05	1
General Chemistry - Diss	solved										
Analyte			Qualifier			Unit			Prepared	Analyzed	Dil Fac
Total Phosphorus as P (EPA 3	365.1)	0.37		0.050	0.050	mg/L	-		07/11/24 08:30	07/16/24 09:36	1
Method: EPA 900.0 - Gro	ss Alpha	and Gross B	eta Radioa Count	ctivity Total							
			Uncert.	Uncert.							
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit		Prepared	Analyzed	Dil Fac
Gross Alpha	4.84		3.13	3.18	3.00				07/03/24 08:58	07/18/24 17:21	1
Gross Beta	7.45	-	1.73	1.88	4.00		pCi/L		07/03/24 08:58	07/18/24 17:21	1
Method: SM Gross Alpha	a Adj - Gi	oss Alpha Ad	justed								
			Count	Total							
			Uncert.	Uncert.							
Analyte		Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit		Prepared	Analyzed	Dil Fac
Adjusted Gross Alpha	3.77	U			3.00	4.46	pCi/L	_		07/19/24 15:03	1
Method: SM 9223B - Coli	iforms, T			- Quanti Tray)							
Analyte		Result	Qualifier	RL	MDL	Unit		D	Prepared	Analyzed	Dil Fac
Escherichia coli		644.0		10.0	10.0		l/100mL			06/27/24 17:12	

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project/Site: CMC

Client Sample ID: EB-20240627

Date Collected: 06/27/24 11:50 Date Received: 06/27/24 14:37

Lab Sample ID: 885-7077-3

Matrix: Water

nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	ND		12	3.0	ng/L		07/15/24 11:26	07/16/24 19:57	1
Perfluoropentanoic acid (PFPeA)	ND		6.1	1.5	ng/L		07/15/24 11:26	07/16/24 19:57	1
Perfluorohexanoic acid (PFHxA)	ND		3.0	0.76	ng/L		07/15/24 11:26	07/16/24 19:57	1
erfluoroheptanoic acid (PFHpA)	ND		3.0		ng/L		07/15/24 11:26	07/16/24 19:57	1
Perfluorooctanoic acid (PFOA)	ND		3.0		ng/L		07/15/24 11:26	07/16/24 19:57	1
Perfluorononanoic acid (PFNA)	ND		3.0		-		07/15/24 11:26	07/16/24 19:57	1
Perfluorodecanoic acid (PFDA)	<u></u> ,				ng/L				1
	ND		3.0		ng/L		07/15/24 11:26	07/16/24 19:57	1
Perfluoroundecanoic acid (PFUnA)	ND		3.0		ng/L		07/15/24 11:26	07/16/24 19:57	1
erfluorododecanoic acid (PFDoA)	ND		3.0		ng/L		07/15/24 11:26	07/16/24 19:57	1
erfluorotridecanoic acid (PFTrDA)	ND		3.0	0.76	ng/L		07/15/24 11:26	07/16/24 19:57	1
Perfluorotetradecanoic acid (PFTeDA)	ND		3.0	0.76	ng/L		07/15/24 11:26	07/16/24 19:57	1
Perfluoropentanesulfonic acid PFPeS)	ND		3.0	0.76	ng/L		07/15/24 11:26	07/16/24 19:57	1
Perfluorohexanesulfonic acid (PFHxS)	ND		3.0	0.76	ng/L		07/15/24 11:26	07/16/24 19:57	1
erfluoroheptanesulfonic acid	ND		3.0	0.76	ng/L		07/15/24 11:26	07/16/24 19:57	1
PFHpS)									
erfluorooctanesulfonic acid (PFOS)	ND		3.0	0.76	ng/L		07/15/24 11:26	07/16/24 19:57	1
Perfluorononanesulfonic acid (PFNS)	ND		3.0	0.76	ng/L		07/15/24 11:26	07/16/24 19:57	1
Perfluorodecanesulfonic acid (PFDS)	ND		3.0	0.76	ng/L		07/15/24 11:26	07/16/24 19:57	1
Perfluorododecanesulfonic acid	ND		3.0	0.76	ng/L		07/15/24 11:26	07/16/24 19:57	1
PFDoS) H,1H,2H,2H-Perfluorohexane	ND		12	3.0	ng/L		07/15/24 11:26	07/16/24 19:57	1
ulfonic acid (4:2 FTS) H,1H,2H,2H-Perfluorooctane sulfonic	ND		12	3.0	ng/L		07/15/24 11:26	07/16/24 19:57	1
cid (6:2 FTS) H,1H,2H,2H-Perfluorodecane	ND		12	3.0	ng/L		07/15/24 11:26	07/16/24 19:57	1
ulfonic acid (8:2 FTS)									
Perfluorooctanesulfonamide (PFOSA)	ND		3.0		ng/L		07/15/24 11:26	07/16/24 19:57	1
I-methylperfluorooctane sulfonamide NMeFOSA)	ND		3.0	0.76	ng/L		07/15/24 11:26	07/16/24 19:57	1
l-ethylperfluorooctane sulfonamide NEtFOSA)	ND		3.0	0.76	ng/L		07/15/24 11:26	07/16/24 19:57	1
I-methylperfluorooctanesulfonamidoa etic acid (NMeFOSAA)	ND		3.0	0.76	ng/L		07/15/24 11:26	07/16/24 19:57	1
l-ethylperfluorooctanesulfonamidoac tic acid (NEtFOSAA)	ND		3.0	0.76	ng/L		07/15/24 11:26	07/16/24 19:57	1
I-methylperfluorooctane	ND		30	7.6	ng/L		07/15/24 11:26	07/16/24 19:57	1
ulfonamidoethanol (NMeFOSE)									
I-ethylperfluorooctane ulfonamidoethanol (NEtFOSE)	ND		30	7.6	ng/L		07/15/24 11:26	07/16/24 19:57	1
lexafluoropropylene Oxide Dimer	ND		12	3.0	ng/L		07/15/24 11:26	07/16/24 19:57	1
دنd (HFPO-DA) ,8-Dioxa-3H-perfluorononanoic acid م کارکنا	ND		12	3.0	ng/L		07/15/24 11:26	07/16/24 19:57	1
ADONA) /erfluoro-3-methoxypropanoic acid	ND		6.1	1.5	ng/L		07/15/24 11:26	07/16/24 19:57	1
PFMPA) ?erfluoro-4-methoxybutanoic acid	ND		6.1	1.5	ng/L		07/15/24 11:26	07/16/24 19:57	1
PFMBA) Ionafluoro-3,6-dioxaheptanoic acid	ND		6.1	1.5	ng/L		07/15/24 11:26	07/16/24 19:57	1
NFDHA) -Chlorohexadecafluoro-3-oxanonan	ND		12	3.0	ng/L		07/15/24 11:26	07/16/24 19:57	1
-1-sulfonic acid(9CI-PF3ONS) 1-Chloroeicosafluoro-3-oxaundecan	ND		12	3.0	ng/L		07/15/24 11:26	07/16/24 19:57	1

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project/Site: CMC

Client Sample ID: EB-20240627

Date Collected: 06/27/24 11:50 Date Received: 06/27/24 14:37

Lab Sample ID: 885-7077-3 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluoro (2-ethoxyethane) sulfonic acid (PFEESA)	ND		6.1	1.5	ng/L		07/15/24 11:26	07/16/24 19:57	1
3-Perfluoropropylpropanoic acid (3:3	ND		15	3.8	ng/L		07/15/24 11:26	07/16/24 19:57	1
FTCA)									
3-Perfluoropentylpropanoic acid (5:3	ND		76	19	ng/L		07/15/24 11:26	07/16/24 19:57	1
FTCA)									
3-Perfluoroheptylpropanoic acid (7:3	ND		76	19	ng/L		07/15/24 11:26	07/16/24 19:57	1
FTCA)									
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	89.6		5 - 130				07/15/24 11:26	07/16/24 19:57	1
13C5 PFPeA	96.9		40 - 130				07/15/24 11:26	07/16/24 19:57	1
13C5 PFHxA	89.9		40 - 130				07/15/24 11:26	07/16/24 19:57	1
13C4 PFHpA	106		40 - 130				07/15/24 11:26	07/16/24 19:57	1
13C8 PFOA	96.1		40 - 130				07/15/24 11:26	07/16/24 19:57	1
13C9 PFNA	88.8		40 - 130				07/15/24 11:26	07/16/24 19:57	1
13C6 PFDA	99.9		40 - 130				07/15/24 11:26	07/16/24 19:57	1
13C7 PFUnA	97.0		30 - 130				07/15/24 11:26	07/16/24 19:57	1
13C2 PFDoA	90.4		10 - 130				07/15/24 11:26	07/16/24 19:57	1
13C2 PFTeDA	74.0		10 - 130				07/15/24 11:26	07/16/24 19:57	1
13C3 PFHxS	79.9		40 - 130				07/15/24 11:26	07/16/24 19:57	1
13C8 PFOS	95.1		40 - 130				07/15/24 11:26	07/16/24 19:57	1
13C8 PFOSA	80.2		40 - 130				07/15/24 11:26	07/16/24 19:57	1
d3-NMeFOSAA	98.6		40 - 170				07/15/24 11:26	07/16/24 19:57	1
d5-NEtFOSAA	98.9		25 - 135				07/15/24 11:26	07/16/24 19:57	1
13C2 4:2 FTS	81.5		40 - 200				07/15/24 11:26	07/16/24 19:57	
13C2 6:2 FTS	110		40 - 200				07/15/24 11:26	07/16/24 19:57	1
13C2 8:2 FTS	95.1		40 - 300				07/15/24 11:26	07/16/24 19:57	1
13C3 HFPO-DA	96.3		40 - 130				07/15/24 11:26	07/16/24 19:57	1
d7-N-MeFOSE-M	64.2		40 - 180 10 - 130				07/15/24 11:26	07/16/24 19:57	1
d9-N-EtFOSE-M	64.8		10 - 130				07/15/24 11:26	07/16/24 19:57	1
d5-NEtPFOSA	64.9		10 - 130				07/15/24 11:26	07/16/24 19:57	
d3-NMePFOSA	66.7		10 - 130 10 - 130				07/15/24 11:26	07/16/24 19:57	1

Method: EPA Draft-4 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS - RA

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanesulfonic acid (PFBS)	ND		3.0	0.76	ng/L		07/15/24 11:26	07/17/24 15:38	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 PFBS	74.9		40 - 135				07/15/24 11:26	07/17/24 15:38	1

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project/Site: CMC

EB-20240627

Lab Control Sample

Lab Control Sample Dup

Method: Draft-4 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS

Job ID: 885-7077-1

5

6

3

Prep Type: Total/NA

Percent Isotope Dilution Recovery (Acceptance Limits)											
		PFBA	PFPeA	13C5PHA	C4PFHA	C8PFOA	C9PFNA	C6PFDA	13C7PUA		
Lab Sample ID	Client Sample ID	(5-130)	(40-130)	(40-130)	(40-130)	(40-130)	(40-130)	(40-130)	(30-130)		
885-7077-1	RG-North20240626	89.0	95.3	85.5	104	96.2	88.0	96.9	84.5		
885-7077-2	RG-South20240627	95.6	102	96.9	110	96.8	87.6	94.8	94.3		
885-7077-3	EB-20240627	89.6	96.9	89.9	106	96.1	88.8	99.9	97.0		
LCS 320-779486/3-A	Lab Control Sample	92.1	97.5	95.3	110	96.2	87.6	99.7	109		
LCSD 320-779486/4-A	Lab Control Sample Dup	90.7	96.1	93.8	111	88.0	103	101	99.1		
LLCS 320-779486/2-A	Lab Control Sample	95.3	100	98.9	113	99.9	79.9	91.0	84.8		
MB 320-779486/1-A	Method Blank	102	107	102	117	102	103	106	119		
			Р	ercent Isotop	e Dilution Re	covery (Acc	eptance Limit	s)			
		PFDoA	PFTDA	C3PFHS	C8PFOS	PFOSA	d3NMFOS	d5NEFOS	M242FTS		
Lab Sample ID	Client Sample ID	(10-130)	(10-130)	(40-130)	(40-130)	(40-130)	(40-170)	(25-135)	(40-200)		
885-7077-1	RG-North20240626	86.7	67.2	78.0	98.1	89.4	106	104	99.5		
885-7077-2	RG-South20240627	86.3	71.2	82.6	105	94.1	104	111	99.0		

74.0

88.1

86.8

79.9

85.2

83.5

95.1

89.5

92.0

80.2

83.7

88.4

98.6

94.8

105

98.9

97.4

103

81.5

81.3

81.3

LLCS 320-779486/2-A	Lab Control Sample	85.0	84.0	87.2	98.8	99.4	101	103	80.8
MB 320-779486/1-A	Method Blank	123	111	93.5	100	101	101	104	91.6
			Р	ercent Isotop	e Dilution Re	covery (Acc	eptance Limi	ts)	
		M262FTS	M282FTS	HFPODA	NMFM	NEFM	d5NPFSA	d3NMFSA	
Lab Sample ID	Client Sample ID	(40-200)	(40-300)	(40-130)	(10-130)	(10-130)	(10-130)	(10-130)	
885-7077-1	RG-North20240626	116	101	85.6	68.6	66.5	68.4	70.3	
885-7077-2	RG-South20240627	117	107	93.1	66.7	63.5	65.1	67.6	
885-7077-3	EB-20240627	110	95.1	96.3	64.2	64.8	64.9	66.7	
LCS 320-779486/3-A	Lab Control Sample	98.3	84.9	90.7	74.1	78.3	75.7	74.2	
LCSD 320-779486/4-A	Lab Control Sample Dup	97.3	86.6	91.8	80.2	85.0	78.0	76.3	
LLCS 320-779486/2-A	Lab Control Sample	106	92.8	92.4	89.4	91.8	84.5	85.9	
MB 320-779486/1-A	Method Blank	115	96.6	96.7	92.3	94.4	87.2	86.3	

90.4

102

99.9

Surrogate Legend

Matrix: Water

885-7077-3

LCS 320-779486/3-A

LCSD 320-779486/4-A

PFBA = 13C4 PFBA PFPeA = 13C5 PFPeA 13C5PHA = 13C5 PFHxA C4PFHA = 13C4 PFHpA C8PFOA = 13C8 PFOA C9PFNA = 13C9 PFNA C6PFDA = 13C6 PFDA 13C7PUA = 13C7 PFUnA PFDoA = 13C2 PFDoA PFTDA = 13C2 PFTeDA C3PFHS = 13C3 PFHxS C8PFOS = 13C8 PFOS PFOSA = 13C8 PFOSA d3NMFOS = d3-NMeFOSAA d5NEFOS = d5-NEtFOSAA M242FTS = 13C2 4:2 FTS M262FTS = 13C2 6:2 FTS M282FTS = 13C2 8:2 FTS HFPODA = 13C3 HFPO-DA NMFM = d7-N-MeFOSE-M

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project/Site: CMC

NEFM = d9-N-EtFOSE-M d5NPFSA = d5-NEtPFOSA d3NMFSA = d3-NMePFOSA

Method: Draft-4 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS

Matrix: Water Prep Type: Total/NA Percent Isotope Dilution Recovery (Acceptance Limits) C3PFBS (40-135) Lab Sample ID **Client Sample ID** 885-7077-1 - RA RG-North20240626 71.5 885-7077-2 - RA RG-South20240627 78.6 EB-20240627 885-7077-3 - RA 74.9 LCS 320-779486/3-A - RA Lab Control Sample 78.1 LCSD 320-779486/4-A - RA Lab Control Sample Dup 75.3 LLCS 320-779486/2-A - RA Lab Control Sample 75.8 MB 320-779486/1-A - RA Method Blank 82.7 Surrogate Legend C3PFBS = 13C3 PFBS

Method: 1668A - Chlorinated Biphenyl Congeners (HRGC/HRMS)

Matrix: Water

					e Dilution Re		•	'	
		PCB1L	PCB3L	PCB4L	PCB15L	PCB19L	PCB37L	PCB54L	PCB77L
Lab Sample ID	Client Sample ID	(15-150)	(15-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)
885-7077-1	RG-North20240626	70	72	66	76	76	67	57	76
885-7077-2	RG-South20240627	72	74	65	72	76	70	62	79
MB 320-777390/1-A	Method Blank	74	75	68	80	79	77	68	88
			Р	ercent Isotop	e Dilution Re	covery (Acc	eptance Limi	ts)	
		PCB81L	PCB104L	PCB105L	PCB114L	PCB118L	PCB123L	PCB126L	PCB155L
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)
885-7077-1	RG-North20240626	74	52	73	72	73	72	77	59
885-7077-2	RG-South20240627	76	53	70	68	67	68	72	62
MB 320-777390/1-A	Method Blank	89	64	80	77	80	80	84	73
			Р	ercent Isotop	e Dilution Re	covery (Acc	eptance Limi	ts)	
		PCB156L	156157L	PCB157L	PCB167L	PCB169L	PCB188L	PCB189L	PCB202L
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)
885-7077-1	RG-North20240626	96	96	96	93	96	55	73	65
885-7077-2	RG-South20240627	96	96	96	94	95	53	64	60
MB 320-777390/1-A	Method Blank	107	107	107	106	110	58	70	61
			Р	ercent Isotop	e Dilution Re	covery (Acc	eptance Limi	ts)	
		PCB205L	PCB206L	PCB208L	PCB209L				
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(25-150)				
885-7077-1	RG-North20240626	79	74	65	71				
885-7077-2	RG-South20240627	72	62	63	70				
MB 320-777390/1-A	Method Blank	75	65	60	62				
Surrogate Legend									
PCB1L = PCB-1L									
PCB3L = PCB-3L									
PCB4L = PCB-4L									
PCB15L = PCB-15L									
PCB19L = PCB-19L									

PCB37L = PCB-37L PCB54L = PCB-54L Job ID: 885-7077-1

Prep Type: Total/NA

Client: Albuquerque Metropolitan Arroyo Flood Control Authority

Project/Site: CMC

PCB77L = PCB-77L
PCB81L = PCB-81L
PCB104L = PCB-104L
PCB105L = PCB-105L
PCB114L = PCB-114L
PCB118L = PCB-118L
PCB123L = PCB-123L
PCB126L = PCB-126L
PCB155L = PCB-155L
PCB156L = PCB-156L
156157L = PCB-156L/157L
PCB157L = PCB-157L
PCB157L = PCB-157L PCB167L = PCB-167L
PCB167L = PCB-167L
PCB167L = PCB-167L PCB169L = PCB-169L
PCB167L = PCB-167L PCB169L = PCB-169L PCB188L = PCB-188L
PCB167L = PCB-167L PCB169L = PCB-169L PCB188L = PCB-188L PCB189L = PCB-189L
PCB167L = PCB-167L PCB169L = PCB-169L PCB188L = PCB-188L PCB189L = PCB-189L PCB202L = PCB-202L
PCB167L = PCB-167L PCB169L = PCB-169L PCB188L = PCB-188L PCB189L = PCB-189L PCB202L = PCB-202L PCB205L = PCB-205L
PCB167L = PCB-167L PCB169L = PCB-169L PCB188L = PCB-188L PCB189L = PCB-189L PCB202L = PCB-202L PCB205L = PCB-205L PCB206L = PCB-206L

Method: 1668A - Chlorinated Biphenyl Congeners (HRGC/HRMS)

Matrix: Water

			P	ercent Isotop	e Dilution Re	covery (Acc	eptance Limi	ts)	
		PCB1L	PCB3L	PCB4L	PCB15L	PCB19L	PCB37L	PCB54L	PCB77L
Lab Sample ID	Client Sample ID	(15-140)	(15-140)	(30-140)	(30-140)	(30-140)	(30-140)	(30-140)	(30-140)
LCS 320-777390/2-A	Lab Control Sample	74	75	70	81	79	79	69	89
LCSD 320-777390/3-A	Lab Control Sample Dup	74	77	69	83	81	80	69	92
			P	ercent Isotop	e Dilution Re	covery (Acc	eptance Limi	ts)	
		PCB81L	PCB104L	PCB105L	PCB114L	PCB118L	PCB123L	PCB126L	PCB155L
Lab Sample ID	Client Sample ID	(30-140)	(30-140)	(30-140)	(30-140)	(30-140)	(30-140)	(30-140)	(30-140)
LCS 320-777390/2-A	Lab Control Sample	88	68	84	83	82	83	87	81
LCSD 320-777390/3-A	Lab Control Sample Dup	91	67	86	86	88	85	89	70
			P	ercent Isotop	e Dilution Re	covery (Acc	eptance Limi	ts)	
		PCB156L	156157L	PCB157L	PCB167L	PCB169L	PCB188L	PCB189L	PCB202L
Lab Sample ID	Client Sample ID	(30-140)	(30-140)	(30-140)	(30-140)	(30-140)	(30-140)	(30-140)	(30-140)
LCS 320-777390/2-A	Lab Control Sample	110	110	110	112	114	60	75	65
LCSD 320-777390/3-A	Lab Control Sample Dup	104	104	104	104	104	61	76	66
			P	ercent Isotop	e Dilution Re	covery (Acc	eptance Limi	ts)	
		PCB205L	PCB206L	PCB208L	PCB209L				
Lab Sample ID	Client Sample ID	(30-140)	(30-140)	(30-140)	(30-140)				
LCS 320-777390/2-A	Lab Control Sample	77	67	65	68				
LCSD 320-777390/3-A	Lab Control Sample Dup	77	70	63	68				
Surrogate Legend									
PCB1L = PCB-1L									

7/31/2024

5 6 7

13

Client: Albuquerque Metropolitan Arroyo Flood Control Authority

Project/Site: CMC PCB104L = PCB-104L PCB105L = PCB-105L PCB114L = PCB-114L PCB118L = PCB-118L PCB123L = PCB-123L PCB126L = PCB-126L PCB155L = PCB-155L PCB156L = PCB-156L 156157L = PCB-156L/157L PCB157L = PCB-157L PCB167L = PCB-167L PCB169L = PCB-169L PCB188L = PCB-188L PCB189L = PCB-189L PCB202L = PCB-202L PCB205L = PCB-205L PCB206L = PCB-206L PCB208L = PCB-208L

PCB209L = PCB-209L

Job ID: 885-7077-1

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Tetrachloro-m-xylene

Matrix: Water Analysis Batch: 169234 Analyte Tetrahydrofuran Surrogate 1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) Toluene-d8 (Surr)	Reco	ND MB	MB Qualifier MB Qualifier	RL 0.010 Limits 63 - 144			Unit mg/L		<u>D</u> .	Ρ	repared	Prep Ty		Dil Fa
Analyte Tetrahydrofuran Surrogate 1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) Toluene-d8 (Surr)		esult ND <i>MB</i> <i>ivery</i> 101 102	Qualifier MB	0.010 <i>Limits</i>					<u>D</u>	Р	repared			
Tetrahydrofuran Surrogate 1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) Toluene-d8 (Surr)		ND <i>MB</i> <i>overy</i> 101 102	МВ	0.010 <i>Limits</i>					<u>D</u>	Р	repared			
Surrogate 1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) Toluene-d8 (Surr)	%Reco	MB overy 101 102		Limits	0.	0018	mg/L						38 -	
1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) Toluene-d8 (Surr)	%Reco	very 101 102										07/02/24 20	50	
1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) Toluene-d8 (Surr)	%Reco	very 101 102												
1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) Toluene-d8 (Surr)		101 102		63 - 144						Р	repared	Analyzed	r	Dil Fa
Dibromofluoromethane (Surr) Toluene-d8 (Surr)												07/02/24 20		
Toluene-d8 (Surr)		103		74 - 124								07/02/24 20	38	
				75 _ 131								07/02/24 20	38	
Lab Sample ID: 1 CS 960 460234/2		99		80 - 120								07/02/24 20	38	
Lab Sample ID: LCS 860-169234/3									С	ient	Sample	ID: Lab Con	trol S	ampl
Matrix: Water												Prep Ty		
Analysis Batch: 169234														
				Spike	LCS	LCS						%Rec		
Analyte				Added	Result	Qua	lifier	Unit		D	%Rec	Limits		
Tetrahydrofuran				0.100	0.0923			mg/L		_	92	75 - 125		
	105	LCS												
Surrogate %R	ecovery	Qual	ifier	Limits										
1,2-Dichloroethane-d4 (Surr)	94	quui		63 - 144										
4-Bromofluorobenzene (Surr)	99			74 - 124										
Dibromofluoromethane (Surr)	98			75 - 131										
Toluene-d8 (Surr)	100			80 - 120										
Lab Sample ID: LCSD 860-169234/4								CI	ent	Sam	nole ID: I	ab Control	Sampl	le Du
Matrix: Water												Prep Ty		
Analysis Batch: 169234														
-				Spike	LCSD	LCS	D					%Rec		RP
Analyte				Added	Result	Qua	lifier	Unit		D	%Rec	Limits	RPD	Lim
Tetrahydrofuran				0.100	0.0984			mg/L		_	98	75 - 125	6	2
	LCSD	100	-											
Surrogate %R	ecovery			Limits										
1,2-Dichloroethane-d4 (Surr)	95	Quai		63 - 144										
	100			74 - 124										
4-Bromofluorobenzene (Surr)														
4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr)	97			75 - 131										

07/03/24 11:25

07/02/24 22:40

41 - 110

107

1

Matrix: Water

Analyte

Dieldrin

Surrogate

Analyte

Dieldrin

Surrogate

Tetrachloro-m-xylene

Matrix: Water

Analyte

Dieldrin

Surrogate

Analyte

Dieldrin

Tetrachloro-m-xylene

Matrix: Water

Tetrachloro-m-xylene

Matrix: Water

QC Sample Results Job ID: 885-7077-1 Method: 608.3 - Organochlorine Pesticides/PCBs in Water (Continued) Lab Sample ID: LCS 860-169312/2-A **Client Sample ID: Lab Control Sample** Prep Type: Total/NA Analysis Batch: 169369 Prep Batch: 169312 5 Spike LCS LCS %Rec Added Result Qualifier %Rec Limits Unit D 0.00125 0.00150 *+ mg/L 120 57 - 107 LCS LCS 7 %Recovery Qualifier Limits DCB Decachlorobiphenyl (Surr) 56 45 - 115 101 41 - 110 Lab Sample ID: LCSD 860-169312/3-A Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA Analysis Batch: 169369 Prep Batch: 169312 Spike LCSD LCSD %Rec RPD Limit Added **Result Qualifier** Unit D %Rec Limits RPD 0.00125 0.00149 *+ 119 57 - 107 1 30 mg/L LCSD LCSD %Recovery Qualifier Limits DCB Decachlorobiphenyl (Surr) 56 45 - 115 99 41 - 110 Lab Sample ID: MB 860-169818/1-A **Client Sample ID: Method Blank** Prep Type: Total/NA Analysis Batch: 169920 Prep Batch: 169818 MB MB Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac ND 0.000050 0.000017 mg/L 07/05/24 21:47 07/13/24 11:39 1 MB MB Dil Fac Qualifier Limits %Recovery Prepared Analyzed DCB Decachlorobiphenyl (Surr) 90 45 - 115 07/05/24 21:47 07/13/24 11:39 1 129 S1+ 41 - 110 07/05/24 21:47 07/13/24 11:39 1 Lab Sample ID: LCS 860-169818/2-A **Client Sample ID: Lab Control Sample** Prep Type: Total/NA Analysis Batch: 169920 Prep Batch: 169818 Spike LCS LCS %Rec Added Result Qualifier Unit %Rec Limits D 0.00125 0.00186 *+ 149 57 - 107 mg/L LCS LCS

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl (Surr)	91		45 - 115
Tetrachloro-m-xylene	124	S1+	41 - 110

Lab Sample ID: LCSD 860-169818/3-A				CI	ient Sam	ple ID:	Lab Contro	ol Sampl	e Dup
Matrix: Water							Prep 1	Гуре: То	tal/NA
Analysis Batch: 169920							Prep	Batch: 1	69818
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Dieldrin	0.00125	0.00187	*+	mg/L		150	57 - 107	0	30

ethod: 608.3 - Organochlor	ine Pest	icid	es/PCB	s in Wate	er (Cont	inı	ued)							
Lab Sample ID: LCSD 860-169818							,	(Client	Sam	nole ID: L	ab Contro	ol Samo	le Dup
Matrix: Water									Shorn	Juli			Гуре: То	-
Analysis Batch: 169920													Batch: 1	
	LCSD	109	n.											
Surrogate	%Recovery			Limits										
DCB Decachlorobiphenyl (Surr)	91			45 - 115										
Tetrachloro-m-xylene	124	S1+		41 _ 110										
lethod: 8081B_LL - Organoc	hlorine	Pes	sticides	(GC)										;
Lab Sample ID: MB 860-169461/1				. ,							Client S	ample ID:	Mathod	Plank
Matrix: Water	~										onent of	-	Гуре: То	
Analysis Batch: 169649													Batch: 1	
		ΜВ	MB											
Analyte	R	esult	Qualifier		RL	Ν	IDL Unit		D	Р	repared	Analyz	zed	Dil Fac
Dieldrin		ND		0.000	0010 0.0	000	000 mg/L 81			07/0	3/24 13:50	07/05/24	10:04	1
			MB				01							
Surrogate	%Reco			Limit	ts					P	repared	Analyz	red	Dil Fac
DCB Decachlorobiphenyl (Surr)			S1+							-	3/24 13:50	07/05/24		1
Tetrachloro-m-xylene		125		18 - 1	126					07/0	3/24 13:50	07/05/24	10:04	1
Lab Sample ID: LCS 860-169461/2	ο_Δ								C	lient	Sample	ID: Lab Co	ontrol S	amnle
Matrix: Water											. oumpro		Гуре: То	-
Analysis Batch: 169649													Batch: 1	
				Spike	LC	s	LCS					%Rec		
Analyte				Added		_	Qualifier	Unit		<u>D</u>	%Rec	Limits		
Dieldrin				0.000100	0.00013	32	*+	mg/L			132	46 - 127		
	LCS	LCS												
Surrogate	%Recovery	Qua	lifier	Limits										
DCB Decachlorobiphenyl (Surr)	139	S1+		15 - 136										
Tetrachloro-m-xylene	123			18 - 126										
Lab Sample ID: LCSD 860-169461	/3-A							(Client	Sam	nple ID: L	ab Contro	ol Samp	le Dup
Matrix: Water												Prep 1	Гуре: То	otal/NA
Analysis Batch: 169649													Batch: 1	
				Spike						-	o/ -	%Rec		RPD
Analyte Dieldrin				Added 0.000100	0.00013		Qualifier	Unit		_ <u>D</u>		Limits	5	Limit 25
				0.000100	0.00013	99	Ŧ	mg/L			128	46 - 127	3	20
	LCSD													
	%Recovery			Limits										
DCB Decachlorobiphenyl (Surr)		S1+		15 - 136										
Tetrachloro-m-xylene	122			18 - 126										

Analysis Batch: 7687

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate	ND		0.10	0.020	mg/L			06/28/24 10:22	1
Nitrite	ND		0.10	0.012	mg/L			06/28/24 10:22	1

RL

0.10

0.10

Spike

Added

2.50

MDL Unit

0.020 mg/L

0.012 mg/L

LCS LCS

2.58

Result Qualifier

D

D

Unit

mg/L

Prepared

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project/Site: CMC

Lab Sample ID: MB 885-7687/58

Lab Sample ID: LCS 885-7687/11

Matrix: Water

Matrix: Water

Analysis Batch: 7687

Analyte

Nitrate

Nitrite

Analyte

Nitrate

Analysis Batch: 7687

Method: 300.0 - Anions, Ion Chromatography (Continued)

MB MB

ND

ND

Result Qualifier

Job ID: 885-7077-1

Prep Type: Total/NA

Prep Type: Total/NA

5 7 10 11 12 13

Dil Fac

1

1

%Rec %Rec Limits 103 90 - 110

Client Sample ID: Method Blank

Analyzed

06/28/24 20:19

06/28/24 20:19

Client Sample ID: Lab Control Sample

Nitrite	1.00	0.986	mg/L	99	90 - 110
Lab Sample ID: LCS 885-7687/59 Matrix: Water Analysis Batch: 7687				Client Sample	ID: Lab Control Sample Prep Type: Total/NA
	Spike	LCS LC	cs		%Rec
Analyte	Added	Result Qu	ualifier Unit	D %Rec	Limits
Nitrate	2.50	2.54	mg/L	102	90 - 110
Nitrite	1.00	0.969	mg/L	97	90 - 110

Lab Sample ID: MRL 885-7687/9 Matrix: Water Analysis Batch: 7687					Client	Sample		ontrol Sample Type: Total/NA
	Spike	MRL	MRL				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Nitrate	0.100	0.111		mg/L		111	50 - 150	
Nitrite	0.0999	0.103		mg/L		103	50 - 150	

Method: Draft-4 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS

Lab Sample ID: MB 320-779486/1-A Matrix: Water Analysis Batch: 780306	MB MB					Client Sa	mple ID: Metho Prep Type: 1 Prep Batch:	Total/NA
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	ND ND	8.0		ng/L		07/15/24 11:26	07/16/24 18:11	1
Perfluoropentanoic acid (PFPeA)	ND	4.0		ng/L		07/15/24 11:26	07/16/24 18:11	1
Perfluorohexanoic acid (PFHxA)	ND	2.0		ng/L		07/15/24 11:26	07/16/24 18:11	1
Perfluoroheptanoic acid (PFHpA)	ND	2.0	0.50			07/15/24 11:26	07/16/24 18:11	
Perfluorooctanoic acid (PFOA)	ND	2.0		ng/L		07/15/24 11:26	07/16/24 18:11	1
Perfluorononanoic acid (PFNA)	ND	2.0	0.50	ng/L		07/15/24 11:26	07/16/24 18:11	1
Perfluorodecanoic acid (PFDA)	ND	2.0	0.50	ng/L		07/15/24 11:26	07/16/24 18:11	1
Perfluoroundecanoic acid (PFUnA)	ND	2.0	0.50	ng/L		07/15/24 11:26	07/16/24 18:11	1
Perfluorododecanoic acid (PFDoA)	ND	2.0	0.50	ng/L		07/15/24 11:26	07/16/24 18:11	1
Perfluorotridecanoic acid (PFTrDA)	ND	2.0	0.50	ng/L		07/15/24 11:26	07/16/24 18:11	1
Perfluorotetradecanoic acid (PFTeDA)	ND	2.0	0.50	ng/L		07/15/24 11:26	07/16/24 18:11	1
Perfluoropentanesulfonic acid (PFPeS)	ND	2.0	0.50	ng/L		07/15/24 11:26	07/16/24 18:11	1
Perfluorohexanesulfonic acid (PFHxS)	ND	2.0	0.50	ng/L		07/15/24 11:26	07/16/24 18:11	1
Perfluoroheptanesulfonic acid (PFHpS)	ND	2.0	0.50	ng/L		07/15/24 11:26	07/16/24 18:11	1

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project/Site: CMC

Method: Draft-4 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS (Continued)

Lab Sample ID: MB 320-779486/1-A Matrix: Water							Client Sa	mple ID: Metho Prep Type: ⁻	
Analysis Batch: 780306								Prep Batch	
		MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	0.50	ng/L		07/15/24 11:26	07/16/24 18:11	1
Perfluorononanesulfonic acid (PFNS)	ND		2.0	0.50	ng/L		07/15/24 11:26	07/16/24 18:11	1
Perfluorodecanesulfonic acid (PFDS)	ND		2.0	0.50	ng/L		07/15/24 11:26	07/16/24 18:11	1
Perfluorododecanesulfonic acid	ND		2.0	0.50	ng/L		07/15/24 11:26	07/16/24 18:11	1
(PFDoS)									
1H,1H,2H,2H-Perfluorohexane sulfonic acid (4:2 FTS)	ND		8.0	2.0	ng/L		07/15/24 11:26	07/16/24 18:11	1
1H,1H,2H,2H-Perfluorooctane sulfonic acid (6:2 FTS)	ND		8.0	2.0	ng/L		07/15/24 11:26	07/16/24 18:11	1
1H,1H,2H,2H-Perfluorodecane sulfonic acid (8:2 FTS)	ND		8.0	2.0	ng/L		07/15/24 11:26	07/16/24 18:11	1
Perfluorooctanesulfonamide (PFOSA)	ND		2.0	0.50	ng/L		07/15/24 11:26	07/16/24 18:11	1
N-methylperfluorooctane sulfonamide (NMeFOSA)	ND		2.0	0.50			07/15/24 11:26	07/16/24 18:11	1
N-ethylperfluorooctane sulfonamide (NEtFOSA)	ND		2.0	0.50	ng/L		07/15/24 11:26	07/16/24 18:11	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		2.0	0.50	ng/L		07/15/24 11:26	07/16/24 18:11	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		2.0	0.50	ng/L		07/15/24 11:26	07/16/24 18:11	1
N-methylperfluorooctane sulfonamidoethanol (NMeFOSE)	ND		20	5.0	ng/L		07/15/24 11:26	07/16/24 18:11	1
N-ethylperfluorooctane sulfonamidoethanol (NEtFOSE)	ND		20	5.0	ng/L		07/15/24 11:26	07/16/24 18:11	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		8.0	2.0	ng/L		07/15/24 11:26	07/16/24 18:11	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		8.0	2.0	ng/L		07/15/24 11:26	07/16/24 18:11	1
Perfluoro-3-methoxypropanoic acid (PFMPA)	ND		4.0	1.0	ng/L		07/15/24 11:26	07/16/24 18:11	1
Perfluoro-4-methoxybutanoic acid (PFMBA)	ND		4.0	1.0	ng/L		07/15/24 11:26	07/16/24 18:11	1
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND		4.0	1.0	ng/L		07/15/24 11:26	07/16/24 18:11	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid(9CI-PF3ONS)	ND		8.0	2.0	ng/L		07/15/24 11:26	07/16/24 18:11	1
e-1-sulfonic acid(sci+1-scivs) 11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11CI-PF3OUdS)	ND		8.0	2.0	ng/L		07/15/24 11:26	07/16/24 18:11	1
Perfluoro (2-ethoxyethane) sulfonic acid (PFEESA)	ND		4.0	1.0	ng/L		07/15/24 11:26	07/16/24 18:11	1
3-Perfluoropropylpropanoic acid (3:3	ND		10	2.5	ng/L		07/15/24 11:26	07/16/24 18:11	1
FTCA) 3-Perfluoropentylpropanoic acid (5:3	ND		50	13	ng/L		07/15/24 11:26	07/16/24 18:11	1
FTCA) 3-Perfluoroheptylpropanoic acid (7:3 FTCA)	ND		50	13	ng/L		07/15/24 11:26	07/16/24 18:11	1
	MB	MB							

	N/B	NID .				
Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C4 PFBA	102		5 _ 130	07/15/24 11:26	07/16/24 18:11	1
13C5 PFPeA	107		40 - 130	07/15/24 11:26	07/16/24 18:11	1
13C5 PFHxA	102		40 - 130	07/15/24 11:26	07/16/24 18:11	1
13C4 PFHpA	117		40 - 130	07/15/24 11:26	07/16/24 18:11	1
13C8 PFOA	102		40 - 130	07/15/24 11:26	07/16/24 18:11	1
13C9 PFNA	103		40 - 130	07/15/24 11:26	07/16/24 18:11	1

Eurofins Albuquerque

Job ID: 885-7077-1

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project/Site: CMC

Method: Draft-4 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS (Continued)

Lab Sample ID: MB 320-779486/1-A Matrix: Water

Analysis Batch: 780306

	MB	MB				
Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C6 PFDA	106		40 - 130	07/15/24 11:26	07/16/24 18:11	1
13C7 PFUnA	119		30 - 130	07/15/24 11:26	07/16/24 18:11	1
13C2 PFDoA	123		10 - 130	07/15/24 11:26	07/16/24 18:11	1
13C2 PFTeDA	111		10 - 130	07/15/24 11:26	07/16/24 18:11	1
13C3 PFHxS	93.5		40 - 130	07/15/24 11:26	07/16/24 18:11	1
13C8 PFOS	100		40 - 130	07/15/24 11:26	07/16/24 18:11	1
13C8 PFOSA	101		40 - 130	07/15/24 11:26	07/16/24 18:11	1
d3-NMeFOSAA	101		40 - 170	07/15/24 11:26	07/16/24 18:11	1
d5-NEtFOSAA	104		25 - 135	07/15/24 11:26	07/16/24 18:11	1
13C2 4:2 FTS	91.6		40 - 200	07/15/24 11:26	07/16/24 18:11	1
13C2 6:2 FTS	115		40 - 200	07/15/24 11:26	07/16/24 18:11	1
13C2 8:2 FTS	96.6		40 - 300	07/15/24 11:26	07/16/24 18:11	1
13C3 HFPO-DA	96.7		40 - 130	07/15/24 11:26	07/16/24 18:11	1
d7-N-MeFOSE-M	92.3		10 - 130	07/15/24 11:26	07/16/24 18:11	1
d9-N-EtFOSE-M	94.4		10 - 130	07/15/24 11:26	07/16/24 18:11	1
d5-NEtPFOSA	87.2		10 - 130	07/15/24 11:26	07/16/24 18:11	1
d3-NMePFOSA	86.3		10 - 130	07/15/24 11:26	07/16/24 18:11	1

Lab Sample ID: LCS 320-779486/3-A Matrix: Water Analysis Batch: 780306

watrix: water					Prep Type: Total/NA
Analysis Batch: 780306					Prep Batch: 779486
	Spike	LCS	LCS		%Rec
Analyte	Added	Result	Qualifier Unit	D %Rec	Limits
Perfluorobutanoic acid (PFBA)	128	123	ng/L	96	70 - 140
Perfluoropentanoic acid (PFPeA)	64.0	58.8	ng/L	92	65 - 135
Perfluorohexanoic acid (PFHxA)	32.0	29.1	ng/L	91	70 - 145
Perfluoroheptanoic acid (PFHpA)	32.0	28.4	ng/L	89	70 - 150
Perfluorooctanoic acid (PFOA)	32.0	28.2	ng/L	88	70 - 150
Perfluorononanoic acid (PFNA)	32.0	32.1	ng/L	100	70 - 150
Perfluorodecanoic acid (PFDA)	32.0	35.7	ng/L	111	70 - 140
Perfluoroundecanoic acid	32.0	29.9	ng/L	93	70 - 145
(PFUnA)			-		
Perfluorododecanoic acid	32.0	27.8	ng/L	87	70 - 140
(PFDoA)					
Perfluorotridecanoic acid	32.0	32.9	ng/L	103	65 - 140
(PFTrDA)	00.0				
Perfluorotetradecanoic acid	32.0	31.6	ng/L	99	60 - 140
(PFTeDA) Perfluoropentanesulfonic acid	30.1	27.3	ng/L	91	65 - 140
(PFPeS)	50.1	21.5	lig/L	51	00 - 140
Perfluorohexanesulfonic acid	29.2	30.8	ng/L	105	65 - 145
(PFHxS)					
Perfluoroheptanesulfonic acid	30.5	33.5	ng/L	110	70 - 150
(PFHpS)					
Perfluorooctanesulfonic acid	29.8	28.3	ng/L	95	55 - 150
(PFOS)					
Perfluorononanesulfonic acid	30.8	28.9	ng/L	94	65 - 145
(PFNS) Perfluorodecanesulfonic acid	30.8	27.2	ng/L	88	60 - 145
(PFDS)	50.0	21.2	lig/L	00	00 - 140
Perfluorododecanesulfonic acid	31.0	24.8	ng/L	80	50 - 145
(PFDoS)	5110				

Eurofins Albuquerque

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project/Site: CMC

5

Method: Draft-4 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS (Continued)

Lab Sample ID: LCS 320-779486	/ 3-A						Client	Sample	ID: Lab Control S	
Matrix: Water									Prep Type: To	
Analysis Batch: 780306									Prep Batch: 7	7948
			Spike	LCS	LCS				%Rec	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
1H,1H,2H,2H-Perfluorohexane			120	128		ng/L		107	70 - 145	
sulfonic acid (4:2 FTS)						0				
1H,1H,2H,2H-Perfluorooctane			122	123		ng/L		101	65 - 155	
sulfonic acid (6:2 FTS)										
1H,1H,2H,2H-Perfluorodecane			123	134		ng/L		109	60 - 150	
sulfonic acid (8:2 FTS)										
Perfluorooctanesulfonamide			32.0	24.5		ng/L		77	70 _ 145	
(PFOSA)										
N-methylperfluorooctane			32.0	28.8		ng/L		90	60 - 150	
sulfonamide (NMeFOSA)										
N-ethylperfluorooctane			32.0	29.2		ng/L		91	65 - 145	
sulfonamide (NEtFOSA)										
N-methylperfluorooctanesulfona			32.0	31.5		ng/L		98	50 - 140	
midoacetic acid (NMeFOSAA)										
N-ethylperfluorooctanesulfonami			32.0	27.6		ng/L		86	70 - 145	
doacetic acid (NEtFOSAA)										
N-methylperfluorooctane			320	301		ng/L		94	70 - 145	
sulfonamidoethanol (NMeFOSE)										
N-ethylperfluorooctane			320	303		ng/L		95	70 - 135	
sulfonamidoethanol (NEtFOSE)										
Hexafluoropropylene Oxide			128	119		ng/L		93	70 - 140	
Dimer Acid (HFPO-DA)										
4,8-Dioxa-3H-perfluorononanoic			121	144		ng/L		119	65 - 145	
acid (ADONA)										
Perfluoro-3-methoxypropanoic			64.0	65.0		ng/L		101	55 - 140	
acid (PFMPA)										
Perfluoro-4-methoxybutanoic			64.0	56.1		ng/L		88	60 - 150	
acid (PFMBA)										
Nonafluoro-3,6-dioxaheptanoic			64.0	58.2		ng/L		91	50 - 150	
acid (NFDHA)										
9-Chlorohexadecafluoro-3-oxan			120	132		ng/L		111	70 - 155	
onane-1-sulfonic										
acid(9CI-PF3ONS)										
11-Chloroeicosafluoro-3-oxaund			121	136		ng/L		113	55 - 160	
ecane-1-sulfonic acid										
(11CI-PF3OUdS)										
Perfluoro (2-ethoxyethane)			57.1	52.8		ng/L		92	70 - 140	
sulfonic acid (PFEESA)										
3-Perfluoropropylpropanoic acid			160	161		ng/L		101	65 - 130	
(3:3 FTCA)										
3-Perfluoropentylpropanoic acid			799	806		ng/L		101	70 - 135	
(5:3 FTCA)									50 445	
3-Perfluoroheptylpropanoic acid			799	887		ng/L		111	50 - 145	
(7:3 FTCA)										
		LCS								
Isotope Dilution	%Recovery	Qualifier	Limits							
13C4 PFBA	92.1		5 - 130							
13C5 PFPeA	97.5		40 - 130							
13C5 PFHxA	95.3		40 - 130							
13C4 PFHpA	110		40 - 130							
13C8 PFOA	96.2		40 - 130							
13C9 PFNA	87.6		40 - 130							
13C6 PFDA	99.7		40 - 130							
13C7 PFUnA	109		30 - 130							

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project/Site: CMC

Method: Draft-4 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS (Continued)

90.7

74.1

78.3

75.7

74.2

Lab Sample ID: LCS 32 Matrix: Water	20-779486/3-A		Client Sample ID: Lab Control Sample Prep Type: Total/NA
Analysis Batch: 78030	6		Prep Batch: 779486
	LCS LC	S	
Isotope Dilution	%Recovery Qu	alifier Limits	
13C2 PFDoA	102	10 - 130	
13C2 PFTeDA	88.1	10 - 130	
13C3 PFHxS	85.2	40 - 130	
13C8 PFOS	89.5	40 - 130	
13C8 PFOSA	83.7	40 - 130	
d3-NMeFOSAA	94.8	40 - 170	
d5-NEtFOSAA	97.4	25 - 135	
13C2 4:2 FTS	81.3	40 - 200	
13C2 6:2 FTS	98.3	40 - 200	
13C2 8:2 FTS	84.9	40 - 300	

40 - 130

10 - 130

10 - 130

10 - 130

10 - 130

Lab Sample ID: LCSD 320-779486/4-A
Matrix: Water
Analysis Batch: 780306

13C3 HFPO-DA

d7-N-MeFOSE-M

d9-N-EtFOSE-M

d5-NEtPFOSA

d3-NMePFOSA

Analysis Batch: 780306							Prep I	Batch: 7	79486
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorobutanoic acid (PFBA)	128	131		ng/L		102	70 - 140	6	30
Perfluoropentanoic acid (PFPeA)	64.0	63.5		ng/L		99	65 - 135	8	30
Perfluorohexanoic acid (PFHxA)	32.0	31.4		ng/L		98	70 - 145	7	30
Perfluoroheptanoic acid (PFHpA)	32.0	30.1		ng/L		94	70 - 150	6	30
Perfluorooctanoic acid (PFOA)	32.0	29.5		ng/L		92	70 - 150	4	30
Perfluorononanoic acid (PFNA)	32.0	29.3		ng/L		91	70 - 150	9	30
Perfluorodecanoic acid (PFDA)	32.0	32.8		ng/L		102	70 - 140	9	30
Perfluoroundecanoic acid	32.0	33.5		ng/L		105	70 - 145	11	30
(PFUnA)									
Perfluorododecanoic acid	32.0	31.5		ng/L		99	70 - 140	13	30
(PFDoA)									
Perfluorotridecanoic acid	32.0	35.8		ng/L		112	65 - 140	8	30
(PFTrDA) Perfluorotetradecanoic acid	32.0	34.6		ng/L		108	60 - 140	9	30
(PFTeDA)	52.0	54.0		iig/L		100	00 - 140	5	50
Perfluoropentanesulfonic acid	30.1	29.0		ng/L		96	65 - 140	6	30
(PFPeS)				Ū					
Perfluorohexanesulfonic acid	29.2	33.6		ng/L		115	65 - 145	9	30
(PFHxS)									
Perfluoroheptanesulfonic acid	30.5	32.4		ng/L		106	70 - 150	3	30
(PFHpS)	20.0	00.0				00		4	20
Perfluorooctanesulfonic acid (PFOS)	29.8	29.6		ng/L		99	55 - 150	4	30
Perfluorononanesulfonic acid	30.8	28.9		ng/L		94	65 - 145	0	30
(PFNS)	0010	2010				0.	00 - 110	Ū	
Perfluorodecanesulfonic acid	30.8	27.6		ng/L		90	60 - 145	2	30
(PFDS)									
Perfluorododecanesulfonic acid	31.0	27.4		ng/L		88	50 - 145	10	30
(PFDoS)									
1H,1H,2H,2H-Perfluorohexane	120	139		ng/L		116	70 - 145	8	30

sulfonic acid (4:2 FTS)

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Job ID: 885-7077-1

5

Method: Draft-4 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS (Continued)

Lab Sample ID: LCSD 320-77 Matrix: Water	′9486/4-A				Cli	ent San	nple ID:	Lab Contro Pren	ol Sampl Type: To	-
Analysis Batch: 780306									Batch: 7	
Analysis Batch. 700000		Spike	LCSD					%Rec	Datch. 7	RPD
Analyte		Added	Result		Unit	D	%Rec	Limits	RPD	Limit
		Added	128	Quaimer	ng/L		105	65 - 155	4	30
1H,1H,2H,2H-Perfluorooctane sulfonic acid (6:2 FTS)		122	120		ng/L		105	05 - 155	4	30
1H,1H,2H,2H-Perfluorodecane		123	150		ng/L		122	60 _ 150	11	30
sulfonic acid (8:2 FTS)		120						001100		
Perfluorooctanesulfonamide		32.0	27.0		ng/L		84	70 - 145	10	30
(PFOSA)					0					
N-methylperfluorooctane		32.0	31.0		ng/L		97	60 - 150	7	30
sulfonamide (NMeFOSA)										
N-ethylperfluorooctane		32.0	32.3		ng/L		101	65 - 145	10	30
sulfonamide (NEtFOSA)										
N-methylperfluorooctanesulfona		32.0	30.4		ng/L		95	50 - 140	3	30
midoacetic acid (NMeFOSAA)		00.0	00.0		0		0.4	70 445	-	
N-ethylperfluorooctanesulfonami		32.0	29.0		ng/L		91	70 - 145	5	30
doacetic acid (NEtFOSAA) N-methylperfluorooctane		320	321		ng/L		100	70 - 145	6	30
sulfonamidoethanol (NMeFOSE)		020	021		iig/L		100	10 - 140	0	00
N-ethylperfluorooctane		320	316		ng/L		99	70 - 135	4	30
sulfonamidoethanol (NEtFOSE)										
Hexafluoropropylene Oxide		128	135		ng/L		105	70 - 140	12	30
Dimer Acid (HFPO-DA)										
4,8-Dioxa-3H-perfluorononanoic		121	156		ng/L		129	65 - 145	8	30
acid (ADONA)										
Perfluoro-3-methoxypropanoic		64.0	70.2		ng/L		110	55 - 140	8	30
acid (PFMPA)										
Perfluoro-4-methoxybutanoic		64.0	60.1		ng/L		94	60 - 150	7	30
acid (PFMBA)		04.0	00.0		0		00	50 450	0	
Nonafluoro-3,6-dioxaheptanoic		64.0	63.6		ng/L		99	50 _ 150	9	30
acid (NFDHA) 9-Chlorohexadecafluoro-3-oxan		120	137		ng/L		115	70 _ 155	3	30
onane-1-sulfonic		120	157		iig/L		115	70 - 100	0	50
acid(9CI-PF3ONS)										
11-Chloroeicosafluoro-3-oxaund		121	146		ng/L		121	55 - 160	7	30
ecane-1-sulfonic acid					0					
(11CI-PF3OUdS)										
Perfluoro (2-ethoxyethane)		57.1	55.8		ng/L		98	70 - 140	5	30
sulfonic acid (PFEESA)										
3-Perfluoropropylpropanoic acid		160	169		ng/L		106	65 - 130	5	30
(3:3 FTCA)									_	
3-Perfluoropentylpropanoic acid		799	851		ng/L		107	70 - 135	5	30
(5:3 FTCA) 3-Perfluoroheptylpropanoic acid		799	925		ng/l		116	50 - 145	4	30
		799	925		ng/L		110	JU - 14J	4	30
(7:3 FTCA)	LCSD LCSD									
Isotope Dilution	%Recovery Qualifier	Limits								
13C4 PFBA	90.7	<u> </u>								
13C5 PFPeA	96.1	40 - 130								
13C5 PFHxA	93.8	40 - 130								
13C4 PFHpA	111	40 - 130								
13C8 PFOA	88.0	40 - 130								
13C9 PFNA	103	40 - 130								
13C6 PFDA	101	40 - 130								
13C7 PFUnA	99.1	30 - 130								
13C2 PFDoA	99.9	10 - 130								
13C2 PFTeDA	86.8	10 - 130								

Limits

40 - 130

40 - 130

40 - 130

40 ₋ 170 25 ₋ 135

40 - 200

40 - 200

40 - 300

40 - 130

10 - 130

10 - 130

10 - 130

10 - 130

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project/Site: CMC

Method: Draft-4 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS (Continued)

LCSD LCSD %Recovery Qualifier

83.5

92.0

88.4

105

103

81.3

97.3

86.6

91.8

80.2

85.0

78.0

76.3

					J	lo	b	I	C):	8	38	8	5-	.7	7().	7	7	-	1
																					_
D :	Li	al	C	ł	Co Pr Pi	re	p	-	Ŋ	/	p	e	;	T	0	t	a	1/	N	1/	4

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Client Sample

Lab Sample ID: LLCS 320-779486/2-A
Matrix: Water
Analysis Batch: 780306

Lab Sample ID: LCSD 320-779486/4-A

Matrix: Water

Isotope Dilution

13C3 PFHxS

13C8 PFOS

13C8 PFOSA

d3-NMeFOSAA

d5-NEtFOSAA

13C2 4:2 FTS

13C2 6:2 FTS

13C2 8:2 FTS

13C3 HFPO-DA

d7-N-MeFOSE-M

d9-N-EtFOSE-M

d5-NEtPFOSA

d3-NMePFOSA

Analysis Batch: 780306

							Tiop Type: Tetamint
Analysis Batch: 780306							Prep Batch: 779486
	Spike	LLCS	LLCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Perfluorobutanoic acid (PFBA)	12.8	11.9		ng/L		93	70 - 140
Perfluoropentanoic acid (PFPeA)	6.40	5.78		ng/L		90	65 - 135
Perfluorohexanoic acid (PFHxA)	3.20	2.86		ng/L		89	70 - 145
Perfluoroheptanoic acid (PFHpA)	3.20	3.01		ng/L		94	70 - 150
Perfluorooctanoic acid (PFOA)	3.20	2.72		ng/L		85	70 - 150
Perfluorononanoic acid (PFNA)	3.20	3.48		ng/L		109	70 - 150
Perfluorodecanoic acid (PFDA)	3.20	2.99		ng/L		93	70 - 140
Perfluoroundecanoic acid	3.20	3.09		ng/L		97	70 - 145
(PFUnA)							
Perfluorododecanoic acid	3.20	2.73		ng/L		85	70 - 140
(PFDoA)							
Perfluorotridecanoic acid	3.20	3.56		ng/L		111	65 - 140
(PFTrDA) Perfluorotetradecanoic acid	3.20	3.14		ng/L		98	60 - 140
(PFTeDA)	0.20	0.14		ng/L		50	00 - 140
Perfluoropentanesulfonic acid	3.01	2.46		ng/L		82	65 - 140
(PFPeS)				-			
Perfluorohexanesulfonic acid	2.92	3.02		ng/L		104	65 - 145
(PFHxS)							
Perfluoroheptanesulfonic acid	3.05	3.07		ng/L		101	70 - 150
(PFHpS) Perfluorooctanesulfonic acid	2.98	2.68		ng/L		90	55 - 150
(PFOS)	2.90	2.00		ng/L		90	55 - 150
Perfluorononanesulfonic acid	3.08	2.94		ng/L		96	65 - 145
(PFNS)				0			
Perfluorodecanesulfonic acid	3.08	2.72		ng/L		88	60 - 145
(PFDS)							
Perfluorododecanesulfonic acid	3.10	2.46		ng/L		79	50 - 145
(PFDoS)	10.0	40.7					70 445
1H,1H,2H,2H-Perfluorohexane	12.0	13.7		ng/L		114	70 - 145
sulfonic acid (4:2 FTS) 1H,1H,2H,2H-Perfluorooctane	12.2	11.9		ng/L		97	65 - 155
sulfonic acid (6:2 FTS)	12.2	11.5		19/1		51	00 - 100

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project/Site: CMC

13C6 PFDA

13C7 PFUnA

13C2 PFDoA

13C2 PFTeDA

13C3 PFHxS

13C8 PFOS

Job ID: 885-7077-1

Method: Draft-4 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS (Continued)

Lab Sample ID: LLCS 320-779	486/2-A						Client	Sample	ID: Lab Control Sample
Matrix: Water									Prep Type: Total/N/
Analysis Batch: 780306									Prep Batch: 77948
			Spike	LLCS	LLCS				%Rec
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits
1H,1H,2H,2H-Perfluorodecane			12.3	11.9		ng/L		97	60 - 150
sulfonic acid (8:2 FTS)									
Perfluorooctanesulfonamide			3.20	2.38		ng/L		74	70 - 145
(PFOSA)									
N-methylperfluorooctane			3.20	2.63		ng/L		82	60 - 150
sulfonamide (NMeFOSA)									
N-ethylperfluorooctane			3.20	2.84		ng/L		89	65 - 145
sulfonamide (NEtFOSA)									
N-methylperfluorooctanesulfona			3.20	3.00		ng/L		94	50 - 140
midoacetic acid (NMeFOSAA)			2.00	0.44		~~/l		76	70 145
N-ethylperfluorooctanesulfonami			3.20	2.44		ng/L		76	70 - 145
doacetic acid (NEtFOSAA) N-methylperfluorooctane			32.0	28.4		ng/L		89	70 - 145
sulfonamidoethanol (NMeFOSE)			52.0	20.4		ng/L		09	10-110
N-ethylperfluorooctane			32.0	29.1		ng/L		91	70 - 135
sulfonamidoethanol (NEtFOSE)			02.0	20.1		.		0.	
Hexafluoropropylene Oxide			12.8	11.5		ng/L		90	70 - 140
Dimer Acid (HFPO-DA)									
4,8-Dioxa-3H-perfluorononanoic			12.1	13.9		ng/L		115	65 - 145
acid (ADONA)									
Perfluoro-3-methoxypropanoic			6.40	6.24		ng/L		98	55 - 140
acid (PFMPA)									
Perfluoro-4-methoxybutanoic			6.40	5.41		ng/L		85	60 - 150
acid (PFMBA)									
Nonafluoro-3,6-dioxaheptanoic			6.40	5.10		ng/L		80	50 - 150
acid (NFDHA)									
9-Chlorohexadecafluoro-3-oxan			12.0	11.2		ng/L		94	70 - 155
onane-1-sulfonic									
acid(9CI-PF3ONS)			10.1	40.0				110	FF 400
11-Chloroeicosafluoro-3-oxaund			12.1	13.3		ng/L		110	55 - 160
ecane-1-sulfonic acid									
(11CI-PF3OUdS) Perfluoro (2-ethoxyethane)			5.71	4.89		ng/L		86	70 - 140
sulfonic acid (PFEESA)			5.71	4.09		ng/L		00	10-110
3-Perfluoropropylpropanoic acid			16.0	15.2		ng/L		95	65 - 130
(3:3 FTCA)			10.0	10.2		.		00	
3-Perfluoropentylpropanoic acid			79.9	70.5		ng/L		88	70 - 135
(5:3 FTCA)						5-			
3-Perfluoroheptylpropanoic acid			79.9	85.7		ng/L		107	50 - 145
(7:3 FTCA)						-			
	LLCS	LLCS							
Isotope Dilution	%Recovery	Qualifier	Limits						
13C4 PFBA	95.3		5 - 130						
13C5 PFPeA	100		40 - 130						
13C5 PFHxA	98.9		40 - 130						
13C4 PFHpA	113		40 - 130						
13C8 PFOA	99.9		40 - 130						
13C9 PFNA	79.9		40 - 130						

Eurofins Albuquerque

40 - 130

30 - 130

10 - 130

10 - 130

40 - 130

40 - 130

91.0

84.8

85.0

84.0

87.2

98.8

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project/Site: CMC

Method: Draft-4 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS (Continued)

Lab Sample ID: LLCS 320-77 Matrix: Water Analysis Batch: 780306	79486/2-A			Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 779486
	LLCS	LLCS		
Isotope Dilution	%Recovery	Qualifier	Limits	
13C8 PFOSA	99.4		40 - 130	
d3-NMeFOSAA	101		40 - 170	
d5-NEtFOSAA	103		25 - 135	
13C2 4:2 FTS	80.8		40 - 200	
13C2 6:2 FTS	106		40 - 200	
13C2 8:2 FTS	92.8		40 - 300	
13C3 HFPO-DA	92.4		40 - 130	
d7-N-MeFOSE-M	89.4		10 - 130	
d9-N-EtFOSE-M	91.8		10 - 130	
d5-NEtPFOSA	84.5		10 - 130	
d3-NMePFOSA	85.9		10 - 130	

Method: Draft-4 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS - RA

Lab Sample ID: MB 320-779486/	/1-A										Client Sa	ample ID: Met	hod	Blank
Matrix: Water												Prep Type	e: Tot	al/NA
Analysis Batch: 780601												Prep Bat	ch: 7	79486
		MB	MB											
Analyte	Re	esult	Qualifier	RL		MDL	Unit		D	Р	repared	Analyzed		Dil Fac
Perfluorobutanesulfonic acid (PFBS) -		ND		2.0		0.50	ng/L			07/1	5/24 11:26	07/17/24 13:5	3	1
RA														
		MB	MB											
Isotope Dilution			Qualifier	Limits					_		repared	Analyzed		Dil Fac
13C3 PFBS - RA		82.7		40 - 135						07/1	5/24 11:26	07/17/24 13:5	3	1
Lab Sample ID: LCS 320-779486	s/3_∆								CI	iont	Sample	ID: Lab Cont	rol Sa	mnle
Matrix: Water										iem	oumpic	Prep Type		- C
Analysis Batch: 780601												Prep Bat		
Analysis Batch. roootr				Spike	LCS	LCS						%Rec		5400
Analyte				Added	Result			Unit		D	%Rec	Limits		
Perfluorobutanesulfonic acid				28.4	26.7			ng/L		_		60 - 145		
(PFBS) - RA								5						
	LCS	LCS												
Isotope Dilution	%Recovery	Qual	lifier	Limits										
13C3 PFBS - RA	78.1			40 - 135										
Lab Sampla ID: 1 CSD 220 7704	0014 4							CI	ont (200		ah Control S	- mal	Dun
Lab Sample ID: LCSD 320-7794 Matrix: Water	00/4-A							CI	ent	Jan	ipie iD. L	ab Control Sa Prep Type		
												Prep Bat		
Analysis Batch: 780601				Spike	LCSD	109	n					%Rec		RPD
Analyte				Added	Result			Unit		D	%Rec		RPD	Limit
Perfluorobutanesulfonic acid				28.4	28.9		-	ng/L		_	102	60 - 145	8	30
(PFBS) - RA				-				5			-	-	-	
	LCSD	LCS	D											
Isotope Dilution	%Recovery	Qual	lifier	Limits										
13C3 PFBS - RA	75.3			40 - 135										

5

7

Method: Draft-4 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS - RA (Continued) Lab Sample ID: LLCS 320-779486/2-A Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA Prep Batch: 779486 Analysis Batch: 780601 LLCS LLCS Spike %Rec Added Result Qualifier Limits Analyte Unit D %Rec Perfluorobutanesulfonic acid 2.84 2.50 ng/L 88 60 - 145 (PFBS) - RA LLCS LLCS Isotope Dilution %Recovery Qualifier Limits 13C3 PFBS - RA 75.8 40 - 135Method: 1668A - Chlorinated Biphenyl Congeners (HRGC/HRMS) Lab Sample ID: MB 320-777390/1-A **Client Sample ID: Method Blank** Matrix: Water Prep Type: Total/NA Analysis Batch: 778376 Prep Batch: 777390 MB MB Analyte Result Qualifier RL MDL Unit D Prepared Dil Fac Analyzed PCB-1 ND 07/08/24 12:40 20 19 07/12/24 01:41 pg/L 1 PCB-2 ND 200 07/08/24 12:40 07/12/24 01:41 16 pg/L 1 PCB-3 ND 07/12/24 01:41 60 48 pg/L 07/08/24 12:40 1 PCB-4 ND 40 24 pg/L 07/08/24 12:40 07/12/24 01:41 PCB-5 ND 200 07/08/24 12:40 07/12/24 01:41 11 pg/L 1 PCB-6 ND 200 25 07/08/24 12:40 07/12/24 01:41 pg/L PCB-7 ND 200 07/08/24 12:40 07/12/24 01:41 18 pg/L 1 PCB-8 ND 200 26 pg/L 07/08/24 12:40 07/12/24 01:41 1 PCB-9 ND 200 07/08/24 12:40 07/12/24 01:41 12 pg/L 1 PCB-10 200 07/08/24 12:40 ND 15 pg/L 07/12/24 01:41 PCB-11 ND 200 150 pg/L 07/08/24 12:40 07/12/24 01:41 1 PCB-12 ND 400 07/08/24 12:40 07/12/24 01:41 31 pg/L 1 PCB-13 ND 400 31 pg/L 07/08/24 12:40 07/12/24 01:41 1 ND 200 PCB-14 07/08/24 12:40 07/12/24 01:41 70 pg/L 1 PCB-15 ND 40 21 07/08/24 12:40 07/12/24 01:41 pg/L PCB-16 ND 200 07/08/24 12:40 07/12/24 01:41 6.8 pg/L 1 PCB-17 ND 200 07/08/24 12:40 07/12/24 01:41 15 pg/L 1 400 PCB-18 ND 15 pg/L 07/08/24 12:40 07/12/24 01.41 1 PCB-19 ND 20 9.4 07/08/24 12:40 07/12/24 01:41 pg/L PCB-20 ND 400 07/08/24 12:40 07/12/24 01:41 21 pg/L 1 PCB-21 ND 400 15 pg/L 07/08/24 12:40 07/12/24 01:41 1 PCB-22 ND 200 7.3 07/08/24 12:40 07/12/24 01:41 pg/L 1 PCB-23 ND 200 8.0 pg/L 07/08/24 12:40 07/12/24 01:41 1 PCB-24 ND 200 9.6 pg/L 07/08/24 12:40 07/12/24 01:41 1 ND PCB-25 200 14 pg/L 07/08/24 12:40 07/12/24 01:41 1 PCB-26 ND 400 9.4 pg/L 07/08/24 12:40 07/12/24 01:41 PCB-27 ND 200 07/08/24 12:40 07/12/24 01.41 9.7 pg/L 1 PCB-28 ND 400 07/08/24 12:40 07/12/24 01:41 21 pg/L PCB-29 ND 400 pg/L 07/08/24 12:40 07/12/24 01:41 9.4 1 PCB-30 ND 400 pg/L 07/08/24 12:40 07/12/24 01:41 15 1 PCB-31 ND 200 20 07/08/24 12:40 07/12/24 01:41 pg/L 1 PCB-32 ND 200 9.6 pg/L 07/08/24 12:40 07/12/24 01:41 1 PCB-33 ND 400 07/08/24 12:40 07/12/24 01:41 15 pg/L 1 PCB-34 ND 200 14 pg/L 07/08/24 12:40 07/12/24 01:41 1 PCB-35 ND 200 8.1 07/08/24 12:40 07/12/24 01:41 pg/L 1 PCB-36 ND

Eurofins Albuquerque

07/12/24 01:41

07/08/24 12:40

1

200

14 pg/L

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project/Site: CMC

Job ID: 885-7077-1

Prep Type: Total/NA

5

7

Client Sample ID: Method Blank

Method: 1668A - Chlorinated Biphenyl Congeners (HRGC/HRMS) (Continued)

Lab Sample ID: MB 320-777390/1-A Matrix: Water

Matrix: Water								Prep Type:	
Analysis Batch: 778376	MB	МВ						Prep Batch:	777390
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-37	ND		20		pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-38	ND		200		pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-39	ND		200		pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-40	ND		400	12	pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-41	ND		200		pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-42	ND		200		pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-43	ND		200		pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-44	ND		600		pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-45	ND		400		pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-46	ND		200		pg/L		07/08/24 12:40	07/12/24 01:41	
PCB-47	ND		600		pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-48	ND		200		pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-49	ND		400		pg/L		07/08/24 12:40	07/12/24 01:41	
PCB-50	ND		400		pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-51	ND		400		pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-52	ND		200		pg/L		07/08/24 12:40	07/12/24 01:41	
PCB-53	ND		400		pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-54	ND		20		pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-55	ND		200		pg/L		07/08/24 12:40	07/12/24 01:41	
PCB-56	ND		200		pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-57	ND		200		pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-58	ND		200		pg/L		07/08/24 12:40	07/12/24 01:41	
PCB-59	ND		600		pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-60	ND		200		pg/L pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-61	ND		800		pg/L		07/08/24 12:40	07/12/24 01:41	
PCB-62	ND		600		pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-63	ND		200		pg/L pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-64			200		pg/L pg/L		07/08/24 12:40	07/12/24 01:41	
PCB-65	ND ND		600		pg/L pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-66									
PCB-67	ND		200 200	10	pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-68	ND		200		pg/L		07/08/24 12:40 07/08/24 12:40	07/12/24 01:41	
PCB-69	ND		400		pg/L		07/08/24 12:40	07/12/24 01:41 07/12/24 01:41	1
PCB-09					pg/L		07/08/24 12:40		
PCB-70 PCB-71	ND ND		800 400		pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-72					pg/L			07/12/24 01:41	1
	ND		200		pg/L		07/08/24 12:40	07/12/24 01:41	
PCB-73	ND		200		pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-74	ND		800		pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-75	ND		600		pg/L		07/08/24 12:40	07/12/24 01:41	
PCB-76	ND		800		pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-77	ND		20		pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-78	ND		200		pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-79	ND		200		pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-80	ND		200		pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-81	ND		20		pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-82	ND		200		pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-83	ND		400		pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-84	ND		200		pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-85	ND		600	16	pg/L		07/08/24 12:40	07/12/24 01:41	1

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project/Site: CMC

1

7

Method: 1668A - Chlorinated Biphenyl Congeners (HRGC/HRMS) (Continued)

Lab Sample ID: MB 320-777390/1-A Matrix: Water

Analysis Batch: 778376

Analyte

PCB-86 PCB-87

PCB-88

PCB-89

PCB-90

PCB-91

PCB-92

PCB-93

PCB-94

PCB-95

PCB-96

PCB-97

PCB-98

PCB-99

PCB-100

PCB-101

PCB-102

PCB-103

PCB-104

PCB-105

PCB-106

PCB-107

PCB-108

PCB-109

PCB-110

PCB-111

PCB-112

PCB-113

PCB-114

PCB-115

PCB-116

PCB-117

PCB-118

PCB-119

PCB-120

PCB-121

PCB-122

PCB-123

PCB-124

PCB-125

PCB-126

PCB-127

PCB-128

PCB-129

PCB-130 PCB-131

PCB-132

PCB-133

PCB-134

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 777390

s Batch: //83/6						Prep Batch:	///390
MB		MDI	11		Drenered	Analyzad	
Result ND	Qualifier RL 1200		Unit pg/L	D	Prepared	Analyzed	Dil Fac
ND	1200		pg/L pg/L		07/08/24 12:40 07/08/24 12:40	07/12/24 01:41 07/12/24 01:41	1
	400		pg/L		07/08/24 12:40	07/12/24 01:41	1
ND ND	200		pg/L		07/08/24 12:40	07/12/24 01:41	1
ND	600		pg/L		07/08/24 12:40	07/12/24 01:41	1
ND	400		pg/L		07/08/24 12:40	07/12/24 01:41	1
ND	200		pg/L		07/08/24 12:40	07/12/24 01:41	1
ND	400		pg/L		07/08/24 12:40	07/12/24 01:41	1
ND	200		pg/L		07/08/24 12:40	07/12/24 01:41	1
ND	200	31			07/08/24 12:40	07/12/24 01:41	1
ND	200		pg/L pg/L		07/08/24 12:40	07/12/24 01:41	1
ND	1200					07/12/24 01:41	1
ND	400		pg/L		07/08/24 12:40 07/08/24 12:40	07/12/24 01:41	1
ND	400		pg/L pg/L			07/12/24 01:41	1
					07/08/24 12:40		
ND ND	400		pg/L		07/08/24 12:40	07/12/24 01:41	1 1
ND	600 400		pg/L		07/08/24 12:40	07/12/24 01:41	1
			pg/L		07/08/24 12:40	07/12/24 01:41	
ND	200		pg/L		07/08/24 12:40	07/12/24 01:41	1
ND	20		pg/L		07/08/24 12:40	07/12/24 01:41	1
ND	20		pg/L		07/08/24 12:40	07/12/24 01:41	1
ND	200		pg/L		07/08/24 12:40	07/12/24 01:41	1
ND	200		pg/L		07/08/24 12:40	07/12/24 01:41	1
ND	400		pg/L		07/08/24 12:40	07/12/24 01:41	1
ND	1200		pg/L		07/08/24 12:40	07/12/24 01:41	1
ND	400		pg/L		07/08/24 12:40	07/12/24 01:41	1
ND	200		pg/L		07/08/24 12:40	07/12/24 01:41	1
ND	200		pg/L		07/08/24 12:40	07/12/24 01:41	1
ND	600		pg/L		07/08/24 12:40	07/12/24 01:41	1
ND	20		pg/L		07/08/24 12:40	07/12/24 01:41	1
ND	400		pg/L		07/08/24 12:40	07/12/24 01:41	1
ND	600		pg/L		07/08/24 12:40	07/12/24 01:41	1
ND	600		pg/L		07/08/24 12:40	07/12/24 01:41	1
ND	20		pg/L		07/08/24 12:40	07/12/24 01:41	1
ND	1200	29			07/08/24 12:40	07/12/24 01:41	1
ND	200		pg/L		07/08/24 12:40	07/12/24 01:41	1
ND	200		pg/L		07/08/24 12:40	07/12/24 01:41	1
ND	200		pg/L		07/08/24 12:40	07/12/24 01:41	1
ND	20		pg/L		07/08/24 12:40	07/12/24 01:41	1
ND	400		pg/L		07/08/24 12:40	07/12/24 01:41	1
ND	1200		pg/L		07/08/24 12:40	07/12/24 01:41	1
ND	20		pg/L		07/08/24 12:40	07/12/24 01:41	1
ND	200		pg/L		07/08/24 12:40	07/12/24 01:41	1
ND	400		pg/L		07/08/24 12:40	07/12/24 01:41	1
ND	800		pg/L		07/08/24 12:40	07/12/24 01:41	1
ND	200		pg/L		07/08/24 12:40	07/12/24 01:41	1
ND	200		pg/L		07/08/24 12:40	07/12/24 01:41	1
ND	200		pg/L		07/08/24 12:40	07/12/24 01:41	1
ND	200	10	pg/L		07/08/24 12:40	07/12/24 01:41	1

Eurofins Albuquerque

07/12/24 01:41

07/08/24 12:40

400

15 pg/L

ND

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project/Site: CMC

Method: 1668A - Chlorinated Biphenyl Congeners (HRGC/HRMS) (Continued)

Job ID: 885-7077-1

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 777390 5

7

Lab Sample ID: MB 320-777390/1-A Matrix: Water

Analysis Batch: 778376

		MB							
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
PCB-135	ND		400	9.8			07/08/24 12:40	07/12/24 01:41	1
PCB-136	ND		200		pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-137	ND		200		pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-138	ND		800		pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-139	ND		400		pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-140	ND		400	9.3	pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-141	ND		200	7.3	pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-142	ND		200	12	pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-143	ND		400	15	pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-144	ND		200	6.2	pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-145	ND		200	14	pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-146	ND		200	7.2	pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-147	ND		400	9.3	pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-148	ND		200	6.6	pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-149	ND		400	9.3	pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-150	ND		200	11	pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-151	ND		400	9.8	pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-152	ND		200	5.5	pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-153	ND		400		pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-154	ND		200		pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-155	ND		20		pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-156	ND		40		pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-157	ND		40		pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-158	ND		200		pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-159	ND		200		pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-160	ND		800		pg/L		07/08/24 12:40	07/12/24 01:41	
PCB-161	ND		200		pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-162	ND		200	9.0	pg/L pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-163	ND		800		pg/L		07/08/24 12:40	07/12/24 01:41	
PCB-164									
PCB-165	ND		200	20	pg/L		07/08/24 12:40	07/12/24 01:41	1
	ND		200		pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-166	ND		400	9.9	pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-167	ND		20		pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-168	ND		400		pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-169	ND		20		pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-170	ND		200		pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-171	ND		400		pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-172	ND		200		pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-173	ND		400	14	pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-174	ND		200	17	pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-175	ND		200	14	pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-176	ND		200	14	pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-177	ND		200	16	pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-178	ND		200	13	pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-179	ND		200	14	pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-180	ND		400	10	pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-181	ND		200	20	pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-182	ND		200		pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-183	ND		200		pg/L		07/08/24 12:40	07/12/24 01:41	1

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project/Site: CMC

Method: 1668A - Chlorinated Biphenyl Congeners (HRGC/HRMS) (Continued)

Job ID: 885-7077-1

2 3 4 5 6 7 8 9 10 11 12 13

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 777390

Lab Sample ID: MB 320-777390/1-A Matrix: Water

Analysis Batch: 778376

	MB	MB							
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
PCB-184	ND		200	14	pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-185	ND		200	12	pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-186	ND		200	15	pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-187	ND		200	19	pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-188	ND		20	10	pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-189	ND		20	16	pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-190	ND		200	15	pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-191	ND		200	20	pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-192	ND		200	17	pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-193	ND		400	10	pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-194	ND		200	8.8	pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-195	ND		200	18	pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-196	ND		200	15	pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-197	ND		200	13	pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-198	ND		400		pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-199	ND		400		pg/L		07/08/24 12:40	07/12/24 01:41	
PCB-200	ND		200		pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-201	ND		200		pg/L		07/08/24 12:40	07/12/24 01:41	. 1
PCB-202	ND		20		pg/L		07/08/24 12:40	07/12/24 01:41	
PCB-203	ND		200		pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-204	ND		200		pg/L pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-204 PCB-205								07/12/24 01:41	
	ND		20		pg/L		07/08/24 12:40		1
PCB-206	ND		20		pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-207	ND		200		pg/L		07/08/24 12:40	07/12/24 01:41	
PCB-208	ND		20		pg/L		07/08/24 12:40	07/12/24 01:41	1
PCB-209	ND		20	TT	pg/L		07/08/24 12:40	07/12/24 01:41	1
la star a Dilutian		MB	1				Durante	American	D# 5
Isotope Dilution PCB-1L	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
	74		15_150				07/08/24 12:40	07/12/24 01:41	
PCB-3L	75		15 - 150				07/08/24 12:40	07/12/24 01:41	1
PCB-4L	68		25 - 150				07/08/24 12:40	07/12/24 01:41	
PCB-15L	80		25 - 150				07/08/24 12:40	07/12/24 01:41	1
PCB-19L	79		25 - 150				07/08/24 12:40	07/12/24 01:41	1
PCB-37L	77		25 _ 150				07/08/24 12:40	07/12/24 01:41	1
PCB-54L	68		25 - 150				07/08/24 12:40	07/12/24 01:41	1
PCB-77L	88		25 - 150				07/08/24 12:40	07/12/24 01:41	1
PCB-81L	89		25 - 150				07/08/24 12:40	07/12/24 01:41	1
PCB-104L	64		25 _ 150				07/08/24 12:40	07/12/24 01:41	1
PCB-105L	80		25 - 150				07/08/24 12:40	07/12/24 01:41	1
PCB-114L	77		25 - 150				07/08/24 12:40	07/12/24 01:41	1
							07/08/24 12:40	07/12/24 01:41	1
PCB-118L	80		25 - 150				07700/24 12.40		
PCB-118L PCB-123L			25 - 150 25 - 150				07/08/24 12:40	07/12/24 01:41	1
	80								1 1
PCB-123L	80 80		25 - 150				07/08/24 12:40	07/12/24 01:41	1 1 1
PCB-123L PCB-126L	80 80 84		25 - 150 25 - 150				07/08/24 12:40 07/08/24 12:40	07/12/24 01:41 07/12/24 01:41	1 1 1 1
PCB-123L PCB-126L PCB-155L	80 80 84 73		25 - 150 25 - 150 25 - 150				07/08/24 12:40 07/08/24 12:40 07/08/24 12:40	07/12/24 01:41 07/12/24 01:41 07/12/24 01:41	1 1 1 1 1
PCB-123L PCB-126L PCB-155L PCB-156L	80 80 84 73 107		25 - 150 25 - 150 25 - 150 25 - 150				07/08/24 12:40 07/08/24 12:40 07/08/24 12:40 07/08/24 12:40	07/12/24 01:41 07/12/24 01:41 07/12/24 01:41 07/12/24 01:41	1 1 1 1 1 1
PCB-123L PCB-126L PCB-155L PCB-156L PCB-156L/157L	80 80 84 73 107 107		25 - 150 25 - 150 25 - 150 25 - 150 25 - 150				07/08/24 12:40 07/08/24 12:40 07/08/24 12:40 07/08/24 12:40 07/08/24 12:40	07/12/24 01:41 07/12/24 01:41 07/12/24 01:41 07/12/24 01:41 07/12/24 01:41	1

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project/Site: CMC

Method: 1668A - Chlorinated Biphenyl Congeners (HRGC/HRMS) (Continued)

Lab Sample ID: MB 320-777390/1-A

	MB	MB				
Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
PCB-188L	58		25 - 150	07/08/24 12:40	07/12/24 01:41	1
PCB-189L	70		25 - 150	07/08/24 12:40	07/12/24 01:41	1
PCB-202L	61		25 - 150	07/08/24 12:40	07/12/24 01:41	1
PCB-205L	75		25 - 150	07/08/24 12:40	07/12/24 01:41	1
PCB-206L	65		25 - 150	07/08/24 12:40	07/12/24 01:41	1
PCB-208L	60		25 - 150	07/08/24 12:40	07/12/24 01:41	1
PCB-209L	62		25 - 150	07/08/24 12:40	07/12/24 01:41	1
	МВ	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits
PCB-28L	80		30 - 135
PCB-111L	85		30 - 135
PCB-178L	98		30 - 135

Lab Sample ID: LCS 320-777390/2-A Matrix: Water

Analysis Batch: 778376

Matrix: Water

Analysis Batch: 778376

-			Spike	LCS	LCS				%Rec	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
PCB-1			2000	1870		pg/L		94	50 - 150	
PCB-3			2000	1860		pg/L		93	50 - 150	
PCB-4			2000	1830		pg/L		91	50 - 150	
PCB-15			2000	1710		pg/L		85	50 - 150	
PCB-19			2000	1800		pg/L		90	50 - 150	
PCB-37			2000	1970		pg/L		98	50 - 150	
PCB-54			2000	1790		pg/L		90	50 - 150	
PCB-77			2000	1900		pg/L		95	50 - 150	
PCB-81			2000	1980		pg/L		99	50 - 150	
PCB-104			2000	2340		pg/L		117	50 - 150	
PCB-105			2000	1810		pg/L		90	50 - 150	
PCB-114			2000	2250		pg/L		113	50 - 150	
PCB-118			2000	2020		pg/L		101	50 - 150	
PCB-123			2000	2200		pg/L		110	50 - 150	
PCB-126			2000	2130		pg/L		106	50 - 150	
PCB-155			2000	2520		pg/L		126	50 - 150	
PCB-156			4000	3770		pg/L		94	50 - 150	
PCB-157			4000	3770		pg/L		94	50 - 150	
PCB-167			2000	1930		pg/L		96	50 - 150	
PCB-169			2000	1860		pg/L		93	50 - 150	
PCB-188			2000	1870		pg/L		94	50 - 150	
PCB-189			2000	1910		pg/L		96	50 - 150	
PCB-202			2000	1960		pg/L		98	50 - 150	
PCB-205			2000	1990		pg/L		100	50 - 150	
PCB-206			2000	1830		pg/L		92	50 - 150	
PCB-208			2000	2010		pg/L		100	50 - 150	
PCB-209			2000	1780		pg/L		89	50 - 150	
	LCS	LCS								
Isotope Dilution	%Recovery	Qualifier	Limits							
PCB-1L	74		15 - 140							

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 777390

Client Sample ID: Lab Control Sample

07/08/24 12:40 07/12/24 01:41

07/12/24 01:41

07/12/24 01:41

07/08/24 12:40

07/08/24 12:40

Prep Type: Total/NA Prep Batch: 777390

Job ID: 885-7077-1

7

1

1

1

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project/Site: CMC

Job ID: 885-7077-1

Method: 1668A - Chlorinated Biphenyl Congeners (HRGC/HRMS) (Continued)

Lab Sample ID: LCS 320-77	77390/2-A		Client Sample ID: Lab Control Sample
Matrix: Water			Prep Type: Total/NA
Analysis Batch: 778376			Prep Batch: 777390
	LCS LCS		
Isotope Dilution	%Recovery Qualifier	Limits	
PCB-3L	75	15 - 140	
PCB-4L	70	30 - 140	
PCB-15L	81	30 - 140	
PCB-19L	79	30 - 140	
PCB-37L	79	30 - 140	
PCB-54L	69	30 - 140	
PCB-77L	89	30 - 140	
PCB-81L	88	30 - 140	
PCB-104L	68	30 - 140	
PCB-105L	84	30 - 140	
PCB-114L	83	30 - 140	
PCB-118L	82	30 - 140	
PCB-123L	83	30 - 140	
PCB-126L	87	30 - 140	
PCB-155L	81	30 - 140	
PCB-156L	110	30 - 140	
PCB-156L/157L	110	30 - 140	
PCB-157L	110	30 - 140	
PCB-167L	112	30 - 140	
PCB-169L	114	30 - 140	
PCB-188L	60	30 - 140	
PCB-189L	75	30 - 140	
PCB-202L	65	30 - 140	
PCB-205L	77	30 - 140	
PCB-206L	67	30 - 140	
PCB-208L	65	30 - 140	
PCB-209L	68	30 - 140	
	LCS LCS		

%Recovery	Qualifier	Limits
80		40 - 125
82		40 - 125
91		40 - 125
	80 82	82

Lab Sample ID: LCSD 320-777390/3-A Matrix: Water

Analysis Batch: 778376							Prep B	Batch: 7	77390
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
PCB-1	2000	1890		pg/L		94	50 - 150	1	50
PCB-3	2000	1830		pg/L		91	50 - 150	2	50
PCB-4	2000	1900		pg/L		95	50 - 150	4	50
PCB-15	2000	1680		pg/L		84	50 - 150	1	50
PCB-19	2000	1800		pg/L		90	50 - 150	0	50
PCB-37	2000	1950		pg/L		98	50 - 150	1	50
PCB-54	2000	1880		pg/L		94	50 _ 150	4	50
PCB-77	2000	1880		pg/L		94	50 - 150	1	50
PCB-81	2000	2070		pg/L		103	50 - 150	4	50
PCB-104	2000	2370		pg/L		118	50 - 150	1	50

Eurofins Albuquerque

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project/Site: CMC

Job ID: 885-7077-1

5

6 7 8

Method: 1668A - Chlorinated Biphenyl Congeners (HRGC/HRMS) (Continued)

Lab Sample ID: LCSD 320 Matrix: Water)-777390/3-A					Cli	ent San	nple ID:		Туре: То	tal/NA
Analysis Batch: 778376			• "							Batch: 7	
Australia			Spike		LCSD	11 14		0/ D = =	%Rec		RPD
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
PCB-105			2000	1860		pg/L		93	50 ₋ 150	3	50
PCB-114			2000	2140		pg/L		107	50 - 150	5	50
PCB-118			2000	1920		pg/L		96	50 - 150	5	50
PCB-123			2000	2170		pg/L		108	50 - 150	1	50
PCB-126			2000	2080		pg/L		104	50 - 150	2	50
PCB-155			2000	2640		pg/L		132	50 - 150	5	50
PCB-156			4000	3740		pg/L		94	50 - 150	1	50
PCB-157			4000	3740		pg/L		94	50 - 150	1	50
PCB-167			2000	1900		pg/L		95	50 _ 150	2	50
PCB-169			2000	1950		pg/L		97	50 - 150	5	50
PCB-188			2000	1910		pg/L		95	50 - 150	2	50
PCB-189			2000	1910		pg/L		96	50 - 150	0	50
PCB-202			2000	1970		pg/L		98	50 - 150	0	50
PCB-205			2000	2080		pg/L		104	50 - 150	4	50
PCB-206			2000	1730		pg/L		87	50 - 150	5	50
PCB-208			2000	2020		pg/L		101	50 - 150	1	50
PCB-209			2000	1800		pg/L		90	50 - 150	1	50
		LCSD									
Isotope Dilution	%Recovery	Qualifier	Limits								
PCB-1L	74		15 - 140								
PCB-3L	77		15 - 140								
PCB-4L	69		30 - 140								
PCB-15L	83		30 - 140								
PCB-19L	81		30 - 140								
PCB-37L	80		30 - 140								
PCB-54L	69		30 - 140								
PCB-77L	92		30 - 140								
PCB-81L	91		30 - 140								
PCB-104L	67		30 - 140								
PCB-105L	86		30 - 140								
PCB-114L	86		30 - 140								
PCB-118L	88		30 - 140								
PCB-123L	85		30 - 140								
PCB-126L	89		30 - 140								
PCB-155L	70		30 - 140								
PCB-156L	104		30 - 140								
PCB-156L/157L	104		30 - 140								
PCB-157L	104		30 - 140								
PCB-167L	104		30 - 140								
PCB-169L	104		30 - 140								
PCB-188L	61		30 - 140								
PCB-189L	76		30 - 140								
PCB-202L	66		30 - 140								
PCB-205L	77		30 - 140								
PCB-206L	70		30 - 140								
PCB-208L	63		30 - 140								
PCB-209L	68		30 - 140								

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project/Site: CMC

Method: 1668A - Chlorinated Biphenyl Congeners (HRGC/HRMS) (Continued)

Lab Sample ID: LCSD 320-77739 Matrix: Water	90/3-A							CI	ient Sa	m	ple ID: L	ab Control Sa Prep Type:	Total/NA
Analysis Batch: 778376												Prep Batc	n: ///390
	LCSD	LCSD											
Surrogate	%Recovery	Qualifier	Limits										
PCB-28L	79		40 _ 125										
PCB-111L	83		40 - 125										
PCB-178L	91		40 - 125										
Method: 200.7 Rev 4.4 - Met	als (ICP)												
Lab Sample ID: MRL 885-8057/1	4								Clie	nt	Sample	ID: Lab Contro	ol Sample
Matrix: Water												Prep Type:	Total/NA
Analysis Batch: 8057													
			Spike			MRL						%Rec	
Analyte			Added		Result		ifier	Unit)	%Rec	Limits	
Calcium			0.500		0.515	J		mg/L			103	50 - 150	
Magnesium			0.500		0.520	J		mg/L			104	50 - 150	
Lab Sample ID: MRL 885-8191/1 Matrix: Water	3								Clie	nt	Sample	ID: Lab Contro Prep Type:	-
Analysis Batch: 8191			Spike		MRL	MRL						%Rec	
Analyte			Added	F	Result	Quali	ifier	Unit	0)	%Rec	Limits	
Calcium			0.500		0.548	J		mg/L			110	50 - 150	
Magnesium			0.500		0.560	J		mg/L			112	50 - 150	
Lab Sample ID: MB 885-7782/1-4	Δ										Client Sa	ample ID: Meth	od Blank
Matrix: Water	•											Type: Total Red	
Analysis Batch: 8057											Пер		tch: 7782
Analysis Baten. 0007		МВ МВ										Перва	1011. 7702
Analyte	R	esult Qualifier		RL		MDL	Unit		D	Pr	epared	Analyzed	Dil Fac
Calcium				1.0		0.053					2/24 13:43	07/08/24 09:51	1
Magnesium		ND		1.0		0.033	-				2/24 13:43	07/08/24 09:51	1
Lab Sample ID: LCS 885-7782/6-	•								Clio	nt	Samplo	ID: Lab Contro	Samplo
Matrix: Water	~								one			Type: Total Red	
											гіері		
Analysis Batch: 8057			0		1.00								tch: 7782
			Spike	_		LCS			_		~-	%Rec	
Analyte			Added	F	Result	Quali	TIER	Unit			%Rec	Limits	
Calcium			50.0		52.5			mg/L			105	85 - 115	
Magnesium			50.0		51.7			mg/L			103	85 - 115	
Lab Sample ID: LLCS 885-7782/	5-A								Clie	nt	-	ID: Lab Contro	-
Matrix: Water											Prep 1	Type: Total Red	coverable
Analysis Batch: 8057													tch: 7782
			Spike		LLCS							%Rec	
Analyte			Added		Result		ifier	Unit)	%Rec	Limits	
Calcium			0.500		0.524			mg/L			105	50 - 150	
Magnesium			0.500		0.511	J		mg/L			102	50 - 150	

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project/Site: CMC

Job ID: 885-7077-1

Lab Sample ID: MB 160-670850/1-4	A							Client S	ample ID: Meth	
Matrix: Water									Prep Type:	
Analysis Batch: 671639		MB MB							Prep Batc	h: 670850
Analyte	R	esult Qualifier	RL		MDL Unit		D	Prepared	Analyzed	Dil Fac
Uranium		ND	1.0		0.15 ug/L		07/	/16/24 15:34	07/19/24 14:22	2
Lab Sample ID: LCS 160-670850/2-	A						Clier	nt Sample	ID: Lab Contro	ol Sample
Matrix: Water									Prep Type:	
Analysis Batch: 671639									Prep Batc	h: 670850
			Spike	LCS	LCS				%Rec	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Uranium			1000	963		ug/L		96	85 - 115	
Lab Sample ID: 885-7077-1 MS							Clie	ent Sampl	e ID: RG-North	2024062
Matrix: Water									Prep Type:	Total/N
Analysis Batch: 671639									Prep Batc	h: <mark>67085</mark>
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte		Qualifier	Added		Qualifier	Unit	D		Limits	
Uranium	1.5		1000	993		ug/L		99	70 - 130	
Lab Sample ID: 885-7077-1 MSD							Clie	ent Sampl	e ID: RG-North	2024062
Matrix: Water									Prep Type:	Total/N
Analysis Batch: 671639									Prep Batc	h: 67085
	Sample	Sample	Spike	MSD	MSD				%Rec	RP
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits R	PD Lim
Uranium	1.5		1000	994		ug/L		99	70 - 130	0 2
Lab Sample ID: 885-7077-2 MS							Clie	nt Sample	e ID: RG-South	2024062
Matrix: Water									Prep Type:	Total/N
Analysis Batch: 671639									Prep Batc	h: 67085
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte		Qualifier	Added		Qualifier	Unit	D		Limits	
Uranium	1.6		1000	1020		ug/L		101	70 - 130	
Lab Sample ID: 885-7077-2 MSD							Clie	nt Sample	e ID: RG-South	
Matrix: Water									Prep Type	
Analysis Batch: 671639									Prep Batc	
	-	Sample	Spike		MSD		_		%Rec	RP
Analyte		Qualifier	Added		Qualifier	Unit	D			PD Lim
Uranium	1.6		1000	1010		ug/L		100	70 - 130	1 2
Lab Sample ID: MB 885-8085/19 Matrix: Water								Client S	ample ID: Meth Prep Type:	
Analysis Batch: 8085										
A L - 4-	-	MB MB							A	B 11 E
Analyte Copper	R	ND Qualifier	RL 0.00050		MDL Unit		D	Prepared	Analyzed 07/09/24 09:56	Dil Fa

Method: 200.8 - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 885-8085/20

Job ID: 885-7077-1

Client Sample ID: Lab Control Sample

7

Lab Sample ID. LCS 003-0003/20										Dron T		tal/N/
Matrix: Water										i ieh i	ype. iu	
Analysis Batch: 8085												
			Spike	LCS	LCS					%Rec		
Analyte			Added	Result	Qualifier	Unit		<u>D</u> _	%Rec	Limits		
Copper			0.0250	0.0242		mg/L			97	85 - 115		
Lead			0.0125	0.0125		mg/L			100	85 - 115		
Lab Sample ID: MRL 885-8085/17							Clie	ent S	Sample	ID: Lab Co	ontrol S	amp
Matrix: Water										Prep T	ype: To	tal/N
Analysis Batch: 8085												
-			Spike	MRL	MRL					%Rec		
Analyte			Added	Result	Qualifier	Unit		D '	%Rec	Limits		
Lead			0.000500	0.000507		mg/L			101	50 - 150		
 Lab Sample ID: MRL 885-8085/18							Clie	ent S	Sample	ID: Lab Co	ontrol S	ampl
Matrix: Water											ype: To	
Analysis Batch: 8085											J po: 10	
·			Spike	MRL	MRL					%Rec		
Analyte			Added	Result	Qualifier	Unit		D	%Rec	Limits		
Copper			0.000500	0.000476	J	mg/L			95	50 - 150		
	НЕМ											
—								0		omple IDul	Method	Blan
Lab Sample ID: MB 885-7985/1								U	lient 5	ample ID: I		
Lab Sample ID: MB 885-7985/1 Matrix: Water								U	lient S	-	уре: То	
-								C	lient 5	-		
Matrix: Water	МВ	МВ						C	lient 5	-		
Matrix: Water Analysis Batch: 7985 Analyte	Result	MB Qualifier			MDL Unit		<u>D</u>		pared	Prep T Analyz	ype: To	otal/N
Matrix: Water Analysis Batch: 7985				RL 5.0	MDL Unit		_ <u>D</u>			Prep T	ype: To	Dil Fa
Matrix: Water Analysis Batch: 7985 Analyte HEM (Oil & Grease)	Result							Pre	pared	Prep T Analyz 07/08/24 (ed 09:19	Dil Fa
Matrix: Water Analysis Batch: 7985 Analyte HEM (Oil & Grease) Lab Sample ID: LCS 885-7985/2	Result							Pre	pared	Prep T 	ed 09:19	Dil Fa
Matrix: Water Analysis Batch: 7985 Analyte HEM (Oil & Grease) Lab Sample ID: LCS 885-7985/2 Matrix: Water	Result							Pre	pared	Prep T 	ed 09:19	Dil Fa
Matrix: Water Analysis Batch: 7985 Analyte HEM (Oil & Grease) Lab Sample ID: LCS 885-7985/2	Result		Spike	5.0				Pre	pared	Prep T 	ed 09:19	Dil Fa
Matrix: Water Analysis Batch: 7985 Analyte HEM (Oil & Grease) Lab Sample ID: LCS 885-7985/2 Matrix: Water Analysis Batch: 7985	Result		Spike Added	5.0 LCS	4.5 mg/L	Unit	Clie	Pre ent S	pared	Analyz 07/08/24 (PID: Lab Co Prep T	ed 09:19	Dil Fa
Matrix: Water Analysis Batch: 7985 Analyte HEM (Oil & Grease) Lab Sample ID: LCS 885-7985/2 Matrix: Water	Result		-	5.0 LCS	4.5 mg/L		Clie	Pre ent S	pared Sample	Analyz 07/08/24 (DID: Lab Co Prep T %Rec	ed 09:19	Dil Fa
Matrix: Water Analysis Batch: 7985 Analyte HEM (Oil & Grease) Lab Sample ID: LCS 885-7985/2 Matrix: Water Analysis Batch: 7985 Analyte HEM (Oil & Grease)	Result		Added	5.0 LCS Result	4.5 mg/L	Unit mg/L	Clie	Pre ent S	Sample	Analyz 07/08/24 (d) ID: Lab Co Prep T %Rec Limits 78 - 114	ed D9:19 Dyntrol S Dype: To	Dil Fa ampl otal/N
Matrix: Water Analysis Batch: 7985 Analyte HEM (Oil & Grease) Lab Sample ID: LCS 885-7985/2 Matrix: Water Analysis Batch: 7985 Analyte HEM (Oil & Grease) Lab Sample ID: LCSD 885-7985/3	Result		Added	5.0 LCS Result	4.5 mg/L	Unit mg/L	Clie	Pre ent S	Sample	Analyz 07/08/24 (DID: Lab Co Prep T %Rec Limits 78 - 114 Lab Contro	ed D9:19 Dype: To ype: To I Samp	Dil Fa Dil Fa amplotal/N
Matrix: Water Analysis Batch: 7985 Analyte HEM (Oil & Grease) Lab Sample ID: LCS 885-7985/2 Matrix: Water Analysis Batch: 7985 Analyte HEM (Oil & Grease) Lab Sample ID: LCSD 885-7985/3 Matrix: Water	Result		Added	5.0 LCS Result	4.5 mg/L	Unit mg/L	Clie	Pre ent S	Sample	Analyz 07/08/24 (DID: Lab Co Prep T %Rec Limits 78 - 114 Lab Contro	ed D9:19 Dyntrol S Dype: To	Dil Fa Dil Fa amplotal/N
Matrix: Water Analysis Batch: 7985 Analyte HEM (Oil & Grease) Lab Sample ID: LCS 885-7985/2 Matrix: Water Analysis Batch: 7985 Analyte HEM (Oil & Grease) Lab Sample ID: LCSD 885-7985/3	Result		Added 40.0	5.0 LCS Result 33.2	4.5 mg/L LCS Qualifier	Unit mg/L	Clie	Pre ent S	Sample	Analyz 07/08/24 (DID: Lab Co Prep T %Rec Limits 78 - 114 Lab Contro Prep T	ed D9:19 Dype: To ype: To I Samp	Dil Fa Dil Fa dampl btal/N
Matrix: Water Analysis Batch: 7985 Analyte HEM (Oil & Grease) Lab Sample ID: LCS 885-7985/2 Matrix: Water Analysis Batch: 7985 Analyte HEM (Oil & Grease) Lab Sample ID: LCSD 885-7985/3 Matrix: Water Analysis Batch: 7985	Result		Added 40.0 Spike	5.0 LCS Result 33.2	4.5 mg/L LCS Qualifier	- Unit mg/L C	Clie	Prej ent S D	Sample	Analyz 07/08/24 (Di Lab Co Prep T %Rec Limits 78 - 114 Lab Contro Prep T %Rec	ed j9:19 ontrol S ype: To I Samp ype: To	Dil Fa Jampi Jampi Jal /N.
Matrix: Water Analysis Batch: 7985 Analyte HEM (Oil & Grease) Lab Sample ID: LCS 885-7985/2 Matrix: Water Analysis Batch: 7985 Analyte HEM (Oil & Grease) Lab Sample ID: LCSD 885-7985/3 Matrix: Water Analysis Batch: 7985 Analyte	Result		Added 40.0 Spike Added	5.0 LCS Result 33.2 LCSD Result	4.5 mg/L LCS Qualifier	Unit mg/L C	Clie	Prej ent S D	Sample	Analyz 07/08/24 (Dil: Lab Co Prep T %Rec Limits 78 - 114 Lab Contro Prep T %Rec Limits	ed j9:19 pontrol S ype: To I Samply ype: To RPD	Dil Fa Gampl Ital/N.
Matrix: Water Analysis Batch: 7985 Analyte HEM (Oil & Grease) Lab Sample ID: LCS 885-7985/2 Matrix: Water Analysis Batch: 7985 Analyte HEM (Oil & Grease) Lab Sample ID: LCSD 885-7985/3 Matrix: Water Analysis Batch: 7985 Analyte HEM (Oil & Grease)	Result ND	Qualifier	Added 40.0 Spike	5.0 LCS Result 33.2	4.5 mg/L LCS Qualifier	- Unit mg/L C	Clie	Prej ent S D	Sample	Analyz 07/08/24 (Di Lab Co Prep T %Rec Limits 78 - 114 Lab Contro Prep T %Rec	ed j9:19 ontrol S ype: To I Samp ype: To	Dil Fa Gampl Ital/N le Du Ital/N RP
Matrix: Water Analysis Batch: 7985 Analyte HEM (Oil & Grease) Lab Sample ID: LCS 885-7985/2 Matrix: Water Analysis Batch: 7985 Analyte HEM (Oil & Grease) Lab Sample ID: LCSD 885-7985/3 Matrix: Water Analysis Batch: 7985 Analysis Batch: 7985 Analyte HEM (Oil & Grease)	Result ND	Qualifier	Added 40.0 Spike Added	5.0 LCS Result 33.2 LCSD Result	4.5 mg/L LCS Qualifier	Unit mg/L C	Clie	Prej ent S D	Sample	Analyz 07/08/24 (Dil: Lab Co Prep T %Rec Limits 78 - 114 Lab Contro Prep T %Rec Limits	ed j9:19 pontrol S ype: To I Samply ype: To RPD	Dil Fa Dil Fa Gampl Ital/N. Ile Du Ital/N. RP Lim
Matrix: Water Analysis Batch: 7985 Analyte HEM (Oil & Grease) Lab Sample ID: LCS 885-7985/2 Matrix: Water Analysis Batch: 7985 Analyte HEM (Oil & Grease) Lab Sample ID: LCSD 885-7985/3 Matrix: Water Analysis Batch: 7985 Analysis Batch: 7985 Analyte HEM (Oil & Grease)	Result ND	Qualifier	Added 40.0 Spike Added	5.0 LCS Result 33.2 LCSD Result	4.5 mg/L LCS Qualifier	Unit mg/L C	Clie	Prej ent S amp	Sample Sample %Rec 83 ble ID: I %Rec 91	Analyz 07/08/24 (Dil: Lab Co Prep T %Rec Limits 78 - 114 Lab Contro Prep T %Rec Limits	ed j9:19 ontrol S ype: To I Samply ype: To <u>RPD</u> 9	Dil Fa Jamp Jamp Jaan Jaan
Matrix: Water Analysis Batch: 7985 Analyte HEM (Oil & Grease) Lab Sample ID: LCS 885-7985/2 Matrix: Water Analysis Batch: 7985 Analyte HEM (Oil & Grease) Lab Sample ID: LCSD 885-7985/3 Matrix: Water Analysis Batch: 7985 Analyte HEM (Oil & Grease) Method: 2540C - Solids, Total Di	Result ND	Qualifier	Added 40.0 Spike Added	5.0 LCS Result 33.2 LCSD Result	4.5 mg/L LCS Qualifier	Unit mg/L C	Clie	Prej ent S amp	Sample Sample %Rec 83 ble ID: I %Rec 91	Prep T Analyz 07/08/24 (0 Prep T %Rec Limits 78 - 114 Lab Controo Prep T %Rec Limits 78 - 114 Sample ID: I	ed j9:19 ontrol S ype: To I Samply ype: To <u>RPD</u> 9	Dil Fa Gampl Jampl Jtal/N le Du Jtal/N RP Lim 2 Blan
Matrix: Water Analysis Batch: 7985 Analyte HEM (Oil & Grease) Lab Sample ID: LCS 885-7985/2 Matrix: Water Analysis Batch: 7985 Analyte HEM (Oil & Grease) Lab Sample ID: LCSD 885-7985/3 Matrix: Water Analysis Batch: 7985 Analyte HEM (Oil & Grease) Method: 2540C - Solids, Total Di Lab Sample ID: MB 885-7815/1	Result ND	Qualifier	Added 40.0 Spike Added	5.0 LCS Result 33.2 LCSD Result	4.5 mg/L LCS Qualifier	Unit mg/L C	Clie	Prej ent S amp	Sample Sample %Rec 83 ble ID: I %Rec 91	Prep T Analyz 07/08/24 (0 Prep T %Rec Limits 78 - 114 Lab Controo Prep T %Rec Limits 78 - 114 Sample ID: I	ed pointrol S ype: To ype: To I Samply ype: To RPD 9 Method	Dil Fa Gampl Jtal/N le Du Jtal/N RP Linr 2 Blan
Matrix: Water Analysis Batch: 7985 Analyte HEM (Oil & Grease) Lab Sample ID: LCS 885-7985/2 Matrix: Water Analysis Batch: 7985 Analyte HEM (Oil & Grease) Lab Sample ID: LCSD 885-7985/3 Matrix: Water Analysis Batch: 7985 Analyte HEM (Oil & Grease) Method: 2540C - Solids, Total Di Lab Sample ID: MB 885-7815/1 Matrix: Water	Result ND	Qualifier	Added 40.0 Spike Added	5.0 LCS Result 33.2 LCSD Result	4.5 mg/L LCS Qualifier	Unit mg/L C	Clie	Prej ent S amp	Sample Sample %Rec 83 ble ID: I %Rec 91	Prep T Analyz 07/08/24 (0 Prep T %Rec Limits 78 - 114 Lab Controo Prep T %Rec Limits 78 - 114 Sample ID: I	ed pointrol S ype: To ype: To I Samply ype: To RPD 9 Method	Dil Fa Gampl Jampl Jtal/N le Du Jtal/N RP Lim 2 Blan
Matrix: Water Analysis Batch: 7985 Analyte HEM (Oil & Grease) Lab Sample ID: LCS 885-7985/2 Matrix: Water Analysis Batch: 7985 Analyte HEM (Oil & Grease) Lab Sample ID: LCSD 885-7985/3 Matrix: Water Analysis Batch: 7985 Analyte HEM (Oil & Grease) Method: 2540C - Solids, Total Di Lab Sample ID: MB 885-7815/1 Matrix: Water	Result ND	Qualifier	Added 40.0 Spike Added	5.0 LCS Result 33.2 LCSD Result	4.5 mg/L LCS Qualifier	Unit mg/L C	Clie	Prei ent S D amp	Sample Sample %Rec 83 ble ID: I %Rec 91	Prep T Analyz 07/08/24 (0 Prep T %Rec Limits 78 - 114 Lab Controo Prep T %Rec Limits 78 - 114 Sample ID: I	ype: To ed j9:19 - ontrol S ype: To I Sampl ype: To RPD 9 Method ype: To	Dil Fa Gampl Ital/N. Ie Du Ie Du Ital/N. RP Lim 2 Blan

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project/Site: CMC

Job ID: 885-7077-1

Method: 2540C - Solids, Total Dissolved (TDS) (Continued)

Lab Sample ID: LCS 885-7815/2							Cli	ent	Sample	ID: Lab Contro	-
Matrix: Water										Prep Type:	Total/N/
Analysis Batch: 7815											
			Spike		S LCS					%Rec	
Analyte			Added		It Qualifier	Unit		D	%Rec	Limits	
Total Dissolved Solids			1000	102	0	mg/L			102	80 - 120	
Lab Sample ID: MB 885-7881/1									Client S	ample ID: Meth	od Blani
Matrix: Water										Prep Type:	Total/N/
Analysis Batch: 7881											
	MB	MB									
Analyte	Result	Qualifier		RL	MDL Unit		D	Pr	epared	Analyzed	Dil Fa
Total Dissolved Solids	ND			50	25 mg/L					07/03/24 12:52	
Lab Sample ID: LCS 885-7881/2							Cli	ent	Sample	ID: Lab Contro	I Sampl
Matrix: Water										Prep Type:	-
Analysis Batch: 7881											
-			Spike	LC	S LCS					%Rec	
Analyte			Added	Resu	It Qualifier	Unit		D	%Rec	Limits	
Total Dissolved Solids			1000		9	mg/L			100	80 - 120	
Lab Sample ID: MB 885-8010/3-A Matrix: Water									Client S	ample ID: Meth Prep Type:	
Analysis Batch: 8585										Prep Ba	tch: 801
Analysis Batch: 8585	МВ	МВ								Prep Ba	tch: 801
-		MB Qualifier		RL	MDL Unit		D	Pr	epared	Prep Ba Analyzed	
Analyte				RL 0.50	MDL Unit				epared 3/24 11:40	Analyzed	Dil Fa
Analyte Nitrogen, Total Kjeldahl Lab Sample ID: LCS 885-8010/5-A	Result							07/08	3/24 11:40	Analyzed 07/09/24 12:26 ID: Lab Contro	Dil Fa
Analyte Nitrogen, Total Kjeldahl Lab Sample ID: LCS 885-8010/5-A Matrix: Water	Result							07/08	3/24 11:40	Analyzed 07/09/24 12:26 ID: Lab Contro Prep Type:	Dil Fa
Analyte Nitrogen, Total Kjeldahl Lab Sample ID: LCS 885-8010/5-A Matrix: Water	Result		 Spike	0.50				07/08	3/24 11:40	Analyzed 07/09/24 12:26 ID: Lab Contro Prep Type:	Dil Fa
Analyte Nitrogen, Total Kjeldahl Lab Sample ID: LCS 885-8010/5-A Matrix: Water Analysis Batch: 8585	Result		Spike Added	0.50	0.50 mg/L	Unit		07/08	3/24 11:40	Analyzed 07/09/24 12:26 ID: Lab Contro Prep Type: Prep Ba	Dil Fa
Analyte Nitrogen, Total Kjeldahl Lab Sample ID: LCS 885-8010/5-A Matrix: Water Analysis Batch: 8585 Analyte	Result		•	0.50	0.50 mg/L S LCS It Qualifier			07/08	3/24 11:40 Sample	Analyzed 07/09/24 12:26 DD: Lab Contro Prep Type: Prep Ba %Rec	Dil Fa
Analyte Nitrogen, Total Kjeldahl Lab Sample ID: LCS 885-8010/5-A Matrix: Water Analysis Batch: 8585 Analyte Nitrogen, Total Kjeldahl	Result		Added	0.50 LC Resu	0.50 mg/L S LCS It Qualifier	Unit	Cli	07/08 ent	<u>Sample</u> <u>%Rec</u> 104	Analyzed 07/09/24 12:26 DID: Lab Contro Prep Type: Prep Ba %Rec Limits 90 - 110	Dil Fa
Analyte Nitrogen, Total Kjeldahl Lab Sample ID: LCS 885-8010/5-A Matrix: Water Analysis Batch: 8585 Analyte Nitrogen, Total Kjeldahl Lab Sample ID: LLCS 885-8010/4-A	Result		Added	0.50 LC Resu	0.50 mg/L S LCS It Qualifier	Unit	Cli	07/08 ent	<u>Sample</u> <u>%Rec</u> 104	Analyzed 07/09/24 12:26 PID: Lab Contro Prep Type: Prep Ba %Rec Limits 90 - 110 PID: Lab Contro	Dil Fa
Analyte Nitrogen, Total Kjeldahl Lab Sample ID: LCS 885-8010/5-A Matrix: Water Analysis Batch: 8585 Analyte Nitrogen, Total Kjeldahl Lab Sample ID: LLCS 885-8010/4-A Matrix: Water	Result		Added	0.50 LC Resu	0.50 mg/L S LCS It Qualifier	Unit	Cli	07/08 ent	<u>Sample</u> <u>%Rec</u> 104	Analyzed 07/09/24 12:26 PID: Lab Contro Prep Type: Prep Ba %Rec Limits 90 - 110 PID: Lab Contro Prep Type:	Dil Fa I Sampl Total/N. tch: 801
Analyte Nitrogen, Total Kjeldahl Lab Sample ID: LCS 885-8010/5-A Matrix: Water Analysis Batch: 8585 Analyte Nitrogen, Total Kjeldahl Lab Sample ID: LLCS 885-8010/4-A Matrix: Water	Result		Added	0.50 LC Resu 10	0.50 mg/L S LCS It Qualifier	Unit	Cli	07/08 ent	<u>Sample</u> <u>%Rec</u> 104	Analyzed 07/09/24 12:26 PID: Lab Contro Prep Type: Prep Ba %Rec Limits 90 - 110 PID: Lab Contro Prep Type:	Dil Fa I Sample Total/N/ tch: 8010
Analyte Nitrogen, Total Kjeldahl Lab Sample ID: LCS 885-8010/5-A Matrix: Water Analysis Batch: 8585 Analyte Nitrogen, Total Kjeldahl Lab Sample ID: LLCS 885-8010/4-A Matrix: Water Analysis Batch: 8585	Result		Added 10.0	0.50 LC Resu 10	0.50 mg/L S LCS It Qualifier	Unit	Cli	07/08 ent	<u>Sample</u> <u>%Rec</u> 104	Analyzed 07/09/24 12:26 Prep Type: Prep Ba %Rec Limits 90 - 110 Prep Type: Prep Type: Prep Ba	Dil Fa I Sample Total/N/ tch: 8010
Analyte Nitrogen, Total Kjeldahl Lab Sample ID: LCS 885-8010/5-A Matrix: Water Analysis Batch: 8585 Analyte Nitrogen, Total Kjeldahl Lab Sample ID: LLCS 885-8010/4-A Matrix: Water Analysis Batch: 8585 Analyte	Result		Added 10.0 Spike	0.50 LC Resu 10	0.50 mg/L S LCS It Qualifier S LLCS It Qualifier	- <mark>Unit</mark> mg/L	Cli	D D D	%Rec 104 5ample %Rec 104	Analyzed 07/09/24 12:26 Prep Type: Prep Ba %Rec Limits 90 - 110 Prep Type: Prep Ba %Rec	Dil Fa I Sample Total/N/ tch: 8010
Analyte Nitrogen, Total Kjeldahl Lab Sample ID: LCS 885-8010/5-A Matrix: Water Analysis Batch: 8585 Analyte Nitrogen, Total Kjeldahl Lab Sample ID: LLCS 885-8010/4-A Matrix: Water Analysis Batch: 8585 Analyte Nitrogen, Total Kjeldahl Nitrogen, Total Kjeldahl	Result ND		Added 10.0 Spike Added	0.50 LC Resu 10 LLC Resu	0.50 mg/L S LCS It Qualifier S LLCS It Qualifier	Unit mg/L	Cli	D D D	%Rec %Rec %Rec %Rec	Analyzed 07/09/24 12:26 PID: Lab Contro Prep Type: Prep Ba %Rec Limits 90 - 110 PID: Lab Contro Prep Type: Prep Ba %Rec Limits	Dil Fa I Sample Total/N/ tch: 8010
Analyte Nitrogen, Total Kjeldahl Lab Sample ID: LCS 885-8010/5-A Matrix: Water Analysis Batch: 8585 Analyte Nitrogen, Total Kjeldahl Lab Sample ID: LLCS 885-8010/4-A Matrix: Water Analysis Batch: 8585 Analyte Nitrogen, Total Kjeldahl Itethod: 365.1 - Phosphorus, Total	Result ND		Added 10.0 Spike Added	0.50 LC Resu 10 LLC Resu	0.50 mg/L S LCS It Qualifier S LLCS It Qualifier	Unit mg/L	Cli	D ent D ent	3/24 11:40 Sample %Rec 104 Sample %Rec 125	Analyzed 07/09/24 12:26 ID: Lab Contro Prep Type: Prep Ba %Rec Limits 90 - 110 ID: Lab Contro Prep Type: Prep Type: Prep Type: Prep Type: Prep Type: State Limits 50 - 150	Dil Fa
Analyte Nitrogen, Total Kjeldahl Lab Sample ID: LCS 885-8010/5-A Matrix: Water Analysis Batch: 8585 Analyte Nitrogen, Total Kjeldahl Lab Sample ID: LLCS 885-8010/4-A Matrix: Water Analysis Batch: 8585 Analyte Nitrogen, Total Kjeldahl Iethod: 365.1 - Phosphorus, Tota Lab Sample ID: MB 885-8218/1-A	Result ND		Added 10.0 Spike Added	0.50 LC Resu 10 LLC Resu	0.50 mg/L S LCS It Qualifier S LLCS It Qualifier	Unit mg/L	Cli	D ent D ent	3/24 11:40 Sample %Rec 104 Sample %Rec 125	Analyzed 07/09/24 12:26 PID: Lab Contro Prep Type: Prep Ba %Rec Limits 90 - 110 PID: Lab Contro Prep Type: Prep Ba %Rec Limits 50 - 150	Dil Fa
Analyte Nitrogen, Total Kjeldahl Lab Sample ID: LCS 885-8010/5-A Matrix: Water Analysis Batch: 8585 Analyte Nitrogen, Total Kjeldahl Lab Sample ID: LLCS 885-8010/4-A Matrix: Water Analysis Batch: 8585 Analyte Nitrogen, Total Kjeldahl Iethod: 365.1 - Phosphorus, Total Lab Sample ID: MB 885-8218/1-A Matrix: Water	Result ND		Added 10.0 Spike Added	0.50 LC Resu 10 LLC Resu	0.50 mg/L S LCS It Qualifier S LLCS It Qualifier	Unit mg/L	Cli	D ent D ent	3/24 11:40 Sample %Rec 104 Sample %Rec 125	Analyzed 07/09/24 12:26 PID: Lab Contro Prep Type: Prep Ba %Rec Limits 90 - 110 Prep Type: Prep Ba %Rec Limits 50 - 150 Cample ID: Meth Prep Type:	Dil Fa
Analyte Nitrogen, Total Kjeldahl Lab Sample ID: LCS 885-8010/5-A Matrix: Water Analysis Batch: 8585 Analyte Nitrogen, Total Kjeldahl Lab Sample ID: LLCS 885-8010/4-A Matrix: Water Analysis Batch: 8585 Analyte Nitrogen, Total Kjeldahl Iethod: 365.1 - Phosphorus, Total Lab Sample ID: MB 885-8218/1-A Matrix: Water	Result ND	Qualifier	Added 10.0 Spike Added	0.50 LC Resu 10 LLC Resu	0.50 mg/L S LCS It Qualifier S LLCS It Qualifier	Unit mg/L	Cli	D ent D ent	3/24 11:40 Sample %Rec 104 Sample %Rec 125	Analyzed 07/09/24 12:26 PID: Lab Contro Prep Type: Prep Ba %Rec Limits 90 - 110 Prep Type: Prep Ba %Rec Limits 50 - 150 Cample ID: Meth Prep Type:	Dil Fad
Analysis Batch: 8585 Analyte Nitrogen, Total Kjeldahl Lab Sample ID: LCS 885-8010/5-A Matrix: Water Analysis Batch: 8585 Analyte Nitrogen, Total Kjeldahl Lab Sample ID: LLCS 885-8010/4-A Matrix: Water Analysis Batch: 8585 Analysis Batch: 8585 Analyte Nitrogen, Total Kjeldahl Vitrogen, Total Kjeldahl Lab Sample ID: LLCS 885-8010/4-A Matrix: Water Analysis Batch: 8585 Lab Sample ID: MB 885-8218/1-A Matrix: Water Analysis Batch: 8500 Analysis Batch: 8500	Result ND	Qualifier	Added 10.0 Spike Added	0.50 LC Resu 10 LLC Resu	0.50 mg/L S LCS It Qualifier S LLCS It Qualifier	Unit mg/L	Cli	<u>D</u>	3/24 11:40 Sample %Rec 104 Sample %Rec 125	Analyzed 07/09/24 12:26 PID: Lab Contro Prep Type: Prep Ba %Rec Limits 90 - 110 Prep Type: Prep Ba %Rec Limits 50 - 150 Cample ID: Meth Prep Type:	Total/NA tch: 8010 I Sample Total/NA tch: 8010

Method: 365.1 - Phosphorus, Total (Continued)

Lab Sample ID: LCS 885-8218/2-A

Job ID: 885-7077-1

Client Sample ID: Lab Control Sample

7

Lab Sample ID: LCS 885-8218/2-A										oumpic	D: Lab Contro	Oumpro
Matrix: Water											Prep Type:	Total/N/
Analysis Batch: 8500											Prep Bat	ch: 821
-			Spike		LCS	LCS					%Rec	
Analyte			Added		Result	Qualifier	Unit		D	%Rec	Limits	
Total Phosphorus as P			0.250		0.239		mg/L		_	95	90 - 110	
Lab Sample ID: MRL 885-8218/7-A								CI	iont	Sample	e ID: Lab Contro	l Samnl
Matrix: Water								01	ient	Jampie	Prep Type:	-
Analysis Batch: 8500			Cuilto		MDI	MRL					Prep Bat %Rec	CII: 6210
Analysis			Spike			Qualifier	l lució			% Dee		
Analyte Total Phosphorus as P			Added 0.0500		0.0529	Quaimer	Unit mg/L		D	%Rec 106	Limits	
			0.0000		0.0020		ilig/L			100	001100	
Method: 5220D - COD												
Lab Sample ID: MB 885-8084/4										Client S	Sample ID: Metho	od Blan
Matrix: Water											Prep Type:	Total/N/
Analysis Batch: 8084												
	MB	МВ										
Analyte	Result	Qualifier		RL		MDL Uni	t	D	Р	repared	Analyzed	Dil Fa
Chemical Oxygen Demand	ND			50		50 mg/	′L				07/09/24 14:14	
Lab Sample ID: LCS 885-8084/5								CI	ient	Sample	e ID: Lab Contro	-
Matrix: Water											Prep Type:	Total/N/
Analysis Batch: 8084												
			Spike		LCS	LCS					%Rec	
Analyte			Added			Qualifier	Unit		D	%Rec	Limits	
Chemical Oxygen Demand			500		511		mg/L			102	90 - 110	
Lab Sample ID: MRL 885-8084/6								CI	ient	Sample	e ID: Lab Contro	
Matrix: Water								0.		oumpro	Prep Type:	
Analysis Batch: 8084											Trop Type.	10101/11/
Analysis Daten. 0004			Spike		MRI	MRL					%Rec	
Analyte			Added			Qualifier	Unit		D	%Rec	Limits	
Chemical Oxygen Demand			50.0		62.6	Quanner	mg/L		_	125	50 - 150	
							5					
Lab Sample ID: MB 885-9076/4										Client S	Sample ID: Metho	od Blan
Matrix: Water											Prep Type:	Total/N/
Analysis Batch: 9076												
	MB	MB										
Analyte	Result	Qualifier		RL		MDL Uni	t	D	Р	repared	Analyzed	Dil Fa
Chemical Oxygen Demand	ND			50		50 mg/	′L				07/23/24 14:19	
Lab Sample ID: LCS 885-9076/5								CI	ient	Sample	e ID: Lab Contro	I Sample
Matrix: Water								-			Prep Type:	-
Analysis Batch: 9076												
			Spike		LCS	LCS					%Rec	
			Added		Result	Qualifier	Unit		D	%Rec	Limits	
Analyte			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Roount	quanner	onne			/		

		Q	C Sam	ole Resu	lts				
Client: Albuquerque Metropolitan Arro Project/Site: CMC	oyo Flood Cor		-					Job ID: 88	5-7077-1
Method: 5220D - COD (Contin	ued)								
Lab Sample ID: MRL 885-9076/6							Client San	ple ID: Lab Contro	Sample
Matrix: Water								Prep Type:	Total/NA
Analysis Batch: 9076									
			Spike		MRL			%Rec	
Analyte			Added	Result		Unit	<u> </u>		
Chemical Oxygen Demand			50.0	60.5		mg/L		21 50 - 150	
Method: SM 2540D - Solids, T	otal Suspei	nded (1	55)						
Lab Sample ID: MB 885-7827/1							Clie	nt Sample ID: Meth	od Blank
Matrix: Water								Prep Type:	Total/NA
Analysis Batch: 7827									
	MB								
Analyte		Qualifier		RL	MDL Unit		D Prepare		Dil Fac
Total Suspended Solids	ND			4.0	4.0 mg/L			07/02/24 16:35	1
Lab Sample ID: LCSSRM 885-782	7/2						Client San	ple ID: Lab Contro	Sample
Matrix: Water								Prep Type:	Total/NA
Analysis Batch: 7827									
			Spike	LCSSRM	LCSSRM			%Rec	
Analyte			Added		Qualifier	Unit	D_%R		1
Total Suspended Solids			100	104		mg/L	104	.0 77.1 - 110. 0	
Method: SM 4500 H+ B - pH									
Lab Sample ID: 885-7077-2 DU							Client Sa	nple ID: RG-South	20240627
Matrix: Water								Prep Type:	Total/NA
Analysis Batch: 8154									
	Sample Sam	•			DU				RPD
Analyte	Result Qual	ifier			Qualifier	Unit	<u>D</u>		PD Limit
рН	8.2 HF			8.2		SU			0 20
Method: SM5210B - BOD, 5 D	ау								
Lab Sample ID: USB 885-7579/1							Clie	nt Sample ID: Meth	od Blank
Matrix: Water								Prep Type:	Total/NA
Analysis Batch: 7579									
		USB							
Analyte		Qualifier		RL	MDL Unit		D Prepare		Dil Fac
Biochemical Oxygen Demand	ND	*_		2.0	2.0 mg/L			06/28/24 11:05	1
Lab Sample ID: LCS 885-7579/2							Client San	ple ID: Lab Contro	ol Sample
Matrix: Water								Prep Type:	-
Analysis Batch: 7579									
			Spike	LCS	LCS			%Rec	
Analyte			Added		Qualifier	Unit	<u>D%R</u>		
Biochemical Oxygen Demand			198	136	*_	mg/L	(69 85 - 115	

Biochemical Oxygen Demand

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project/Site: CMC

Method: 900.0 - Gross Alpha and Gross Beta Radioactivity

Job ID: 885-7077-1

		69229 /1	I-A							Client Sa	mple ID: Metho Prep Type:	
Matrix: Water Analysis Batch:	671234										Prep Batch	
anarysis bateri.	071204			Count	Total						Trop Baten	. 00522
		MB	МВ	Uncert.	Uncert.							
Analyte			Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	F	Prepared	Analyzed	Dil Fa
Gross Alpha		0.05317		0.636	0.636	3.00	1.19	pCi/L		03/24 08:58	07/18/24 17:23	Diria
Gross Beta		0.3346		0.541	0.542	4.00	0.910			03/24 08:58	07/18/24 17:23	
									0			0
ab Sample ID: L	LCS 160-0	669229/	(2-A						Clien	t Sample I	D: Lab Control	
Matrix: Water											Prep Type:	
Analysis Batch:	671234										Prep Batch	: 66922
						Total						
			Spike		LCS	Uncert.					%Rec	
Analyte			Added	Result	Qual	(2σ+/-)	RL	MDC	Unit	%Rec	Limits	
Gross Alpha			49.5	51.70		7.58	3.00	1.87	pCi/L	104	75 - 125	
.ab Sample ID: L	LCSB 160)-66922	9/3-A						Clien	t Sample I	D: Lab Control	Sampl
Matrix: Water											Prep Type:	-
Analysis Batch:	671234										Prep Batch	
						Total						
			Spike	LCSB	LCSB	Uncert.					%Rec	
Analyte			Added	Result	Qual	(2σ+/-)	RL	MDC	Unit	%Rec	Limits	
		-										
Gross Beta			71.2	68.60		7.38	4.00	0.769	pCi/L	96	75 - 125	
	005 7077	0 M0	71.2	68.60		7.38	4.00	0.769				004000
_ab Sample ID: 8	885-7077-	2 MS	71.2	68.60		7.38	4.00	0.769			ID: RG-South2	
∟ab Sample ID: 8 Matrix: Water		2 MS	71.2	68.60		7.38	4.00	0.769			ID: RG-South2 Prep Type:	Total/N
Lab Sample ID: 8 Matrix: Water		2 MS	71.2	68.60			4.00	0.769			ID: RG-South2	Total/N
_ab Sample ID: 8 Matrix: Water	671234					Total	4.00	0.769			ID: RG-South2 Prep Type: Prep Batch	Total/N
Lab Sample ID: 8 Matrix: Water Analysis Batch:	671234 Sample	Sample	Spike	MS		Total Uncert.			Clier	nt Sample	ID: RG-South2 Prep Type: Prep Batch %Rec	Total/N
_ab Sample ID: 8 Matrix: Water Analysis Batch: Analyte	671234 Sample Result	Sample Qual	Spike Added	MS Result		Total Uncert. (2σ+/-)	RL	MDC	Clier	nt Sample %Rec	ID: RG-South2 Prep Type: Prep Batch %Rec Limits	Total/N
ab Sample ID: 8 Aatrix: Water Analysis Batch: nalyte	671234 Sample	Sample Qual	Spike	MS		Total Uncert.		MDC	Clier	nt Sample	ID: RG-South2 Prep Type: Prep Batch %Rec	Total/N
Lab Sample ID: 8 Matrix: Water Analysis Batch: Analyte Gross Alpha	671234 Sample Result 4.84	Sample Qual G	Spike Added 109	MS Result		Total Uncert. (2σ+/-)	RL	MDC	Clier Unit pCi/L	nt Sample	ID: RG-South2 Prep Type: Prep Batch %Rec Limits	Total/N/ : 66922
Lab Sample ID: 8 Matrix: Water Analysis Batch: Analyte Gross Alpha Lab Sample ID: 8	671234 Sample Result 4.84	Sample Qual G	Spike Added 109	MS Result		Total Uncert. (2σ+/-)	RL	MDC	Clier Unit pCi/L	nt Sample	ID: RG-South2 Prep Type: Prep Batch %Rec Limits 60 - 140	Total/N/ : 66922 024062
Lab Sample ID: 8 Matrix: Water Analysis Batch: Analyte Gross Alpha Lab Sample ID: 8 Matrix: Water	671234 Sample Result 4.84 885-7077-	Sample Qual G	Spike Added 109	MS Result		Total Uncert. (2σ+/-)	RL	MDC	Clier Unit pCi/L	nt Sample	ID: RG-South2 Prep Type: Prep Batch %Rec Limits 60 - 140 ID: RG-South2	Total/N/ : 66922 024062 Total/N/
Lab Sample ID: 8 Matrix: Water Analysis Batch: Analyte Gross Alpha Lab Sample ID: 8 Matrix: Water	671234 Sample Result 4.84 885-7077-	Sample Qual G	Spike Added 109	MS Result		Total Uncert. (2σ+/-)	RL	MDC	Clier Unit pCi/L	nt Sample	ID: RG-South2 Prep Type: Prep Batch %Rec Limits 60 - 140 ID: RG-South2 Prep Type:	Total/N/ : 66922 024062 Total/N/
Lab Sample ID: 8 Matrix: Water Analysis Batch: Analyte Gross Alpha Lab Sample ID: 8 Matrix: Water	671234 Sample Result 4.84 885-7077-	Sample Qual G 2 MSB	Spike Added 109	MS <u>Result</u> 112.0		Total Uncert. (2σ+/-) 16.8	RL	MDC	Clier Unit pCi/L	nt Sample	ID: RG-South2 Prep Type: Prep Batch %Rec Limits 60 - 140 ID: RG-South2 Prep Type:	Total/N/ : 66922 024062 Total/N/
Lab Sample ID: 8 Matrix: Water Analysis Batch: Gross Alpha Lab Sample ID: 8 Matrix: Water Analysis Batch:	671234 Sample Result 4.84 885-7077- 671234	Sample Qual G 2 MSB Sample	Spike Added 109	MS <u>Result</u> 112.0	Qual	Total Uncert. (2σ+/-) 16.8	RL	MDC	Clier Unit pCi/L	nt Sample	ID: RG-South2 Prep Type: Prep Batch %Rec Limits 60 - 140 ID: RG-South2 Prep Type: Prep Batch	Total/N/ : 66922 024062 Total/N/
Lab Sample ID: 8 Matrix: Water Analysis Batch: Analyte Gross Alpha Lab Sample ID: 8 Matrix: Water Analysis Batch:	671234 Sample Result 4.84 885-7077- 671234 Sample	Sample Qual G 2 MSB Sample	Spike Added 109 T Spike	MS Result 112.0	Qual	Total Uncert. (2σ+/-) 16.8 Total Uncert.	RL 3.00	MDC 5.42 MDC	Unit pCi/L Clier	nt Sample	ID: RG-South2 Prep Type: Prep Batch %Rec Limits 60 - 140 ID: RG-South2 Prep Type: Prep Batch %Rec	Total/N/ : 66922 024062 Total/N/
ab Sample ID: 8 Matrix: Water Analysis Batch: malyte Bross Alpha Ab Sample ID: 8 Matrix: Water Analysis Batch: malyte Bross Beta	671234 Sample Result 4.84 885-7077- 671234 Sample Result 7.45	Sample Qual G 2 MSB Sample Qual	Spike Added 109 T Spike Added	MS Result 112.0 MSBT Result	Qual	Total Uncert. (2σ+/-) 16.8 Total Uncert. (2σ+/-)	RL 3.00	MDC 5.42 MDC	Unit pCi/L Clier Unit pCi/L	%Rec 98 101 %Rec	ID: RG-South2 Prep Type: Prep Batch %Rec Limits 60 - 140 ID: RG-South2 Prep Type: Prep Batch %Rec Limits 60 - 140	Total/N. : 66922 024062 Total/N. : 66922
Lab Sample ID: 8 Matrix: Water Analysis Batch: Gross Alpha Lab Sample ID: 8 Matrix: Water Analysis Batch: Gross Beta Cab Sample ID: 8	671234 Sample Result 4.84 885-7077- 671234 Sample Result 7.45	Sample Qual G 2 MSB Sample Qual	Spike Added 109 T Spike Added	MS Result 112.0 MSBT Result	Qual	Total Uncert. (2σ+/-) 16.8 Total Uncert. (2σ+/-)	RL 3.00	MDC 5.42 MDC	Unit pCi/L Clier Unit pCi/L	%Rec 98 101 %Rec	ID: RG-South2 Prep Type: Prep Batch %Rec Limits 60 - 140 ID: RG-South2 Prep Type: Prep Batch %Rec Limits 60 - 140 ID: RG-South2	Total/N. : 66922 024062 Total/N. : 66922 024062
Lab Sample ID: 8 Matrix: Water Analysis Batch: Gross Alpha Lab Sample ID: 8 Matrix: Water Analysis Batch: Gross Beta Lab Sample ID: 8 Matrix: Water	671234 Sample Result 4.84 885-7077- 671234 Sample Result 7.45 885-7077-	Sample Qual G 2 MSB Sample Qual	Spike Added 109 T Spike Added	MS Result 112.0 MSBT Result	Qual	Total Uncert. (2σ+/-) 16.8 Total Uncert. (2σ+/-)	RL 3.00	MDC 5.42 MDC	Unit pCi/L Clier Unit pCi/L	%Rec 98 101 %Rec	ID: RG-South2 Prep Type: Prep Batch %Rec Limits 60 - 140 ID: RG-South2 Prep Type: Prep Batch %Rec Limits 60 - 140 ID: RG-South2 Prep Type:	Total/N. : 66922 024062 Total/N. : 66922 024062 Total/N.
Lab Sample ID: 8 Matrix: Water Analysis Batch: Gross Alpha Lab Sample ID: 8 Matrix: Water Analysis Batch: Gross Beta Lab Sample ID: 8 Matrix: Water	671234 Sample Result 4.84 885-7077- 671234 Sample Result 7.45 885-7077-	Sample Qual G 2 MSB Sample Qual	Spike Added 109 T Spike Added	MS Result 112.0 MSBT Result	Qual	Total Uncert. (2σ+/-) 16.8 Total Uncert. (2σ+/-) 17.7	RL 3.00	MDC 5.42 MDC	Unit pCi/L Clier Unit pCi/L	%Rec 98 101 %Rec	ID: RG-South2 Prep Type: Prep Batch %Rec Limits 60 - 140 ID: RG-South2 Prep Type: Prep Batch %Rec Limits 60 - 140 ID: RG-South2	Total/N. : 66922 024062 Total/N. : 66922 024062 Total/N.
Lab Sample ID: 8 Matrix: Water Analysis Batch: Gross Alpha Lab Sample ID: 8 Matrix: Water Analysis Batch: Gross Beta Lab Sample ID: 8 Matrix: Water	671234 Sample Result 4.84 885-7077- 671234 Sample Result 7.45 885-7077- 671234	Sample Qual G 2 MSB 2 MSB 2 MSB 2 MSB 2 MSB 2 MSB 2 MSB	Spike Added 109 T Spike Added 156	MS Result 112.0 MSBT Result 165.5	Qual	Total Uncert. (2σ+/-) 16.8 Total Uncert. (2σ+/-) 17.7	RL 3.00	MDC 5.42 MDC	Unit pCi/L Clier Unit pCi/L	%Rec 98 101 %Rec	ID: RG-South2 Prep Type: Prep Batch %Rec Limits 60 - 140 ID: RG-South2 Prep Type: Prep Batch %Rec Limits 60 - 140 ID: RG-South2 Prep Type:	Total/N/ : 66922 024062 Total/N/ : 66922 024062 Total/N/ : 66922
Gross Beta Lab Sample ID: 8 Matrix: Water Analysis Batch: Gross Alpha Lab Sample ID: 8 Matrix: Water Analysis Batch: Gross Beta Lab Sample ID: 8 Matrix: Water Analyte Gross Beta Lab Sample ID: 8 Matrix: Water Analysis Batch: Analysis Batch:	671234 Sample Result 4.84 885-7077- 671234 Sample Result 7.45 885-7077-	Sample Qual G 2 MSB 2 MS	Spike Added 109 T Spike Added 156	MS Result 112.0 MSBT Result 165.5	Qual MSBT Qual	Total Uncert. (2σ+/-) 16.8 Total Uncert. (2σ+/-) 17.7	RL 3.00	MDC 5.42 MDC	Clier Unit pCi/L Clier Unit pCi/L Clier	%Rec 98 101 %Rec	ID: RG-South2 Prep Type: Prep Batch %Rec Limits 60 - 140 ID: RG-South2 Prep Type: Prep Batch %Rec Limits 60 - 140 ID: RG-South2 Prep Type:	Total/N/ : 66922 024062 Total/N/ : 66922 024062 Total/N/ : 66922 RE

Eurofins Albuquerque

0.34

1

2.12

4.00

2.25 pCi/L

8.810

Gross Beta

7.45

lethod: 9223B - Coliforms, Tot	tal, and E.	Coll (Colile	rt - Quanti	Tray)				
Lab Sample ID: MB 885-7536/1 Matrix: Water Analysis Batch: 7536						Client Sa	ample ID: Metho Prep Type: ٦	
	MB	МВ						
Analyte Escherichia coli	Result ND	Qualifier	RL 1.0	MDL 1.0	 D	Prepared	Analyzed 06/27/24 17:12	Dil Fac

Prep Type

Total/NA

Matrix

Water

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project/Site: CMC

Client Sample ID

RG-North20240626

GC/MS VOA

Lab Sample ID

885-7077-1

Analysis Batch: 169234

Job ID: 885-7077-1

Prep Batch

Prep Batch

Prep Batch

Prep Batch

Prep Batch

Prep Batch

169312

169312

169312

169312

169312

169191

169191

Method

624.1

			10/	
885-7077-2	RG-South20240627	Total/NA	Water	624.1
MB 860-169234/9	Method Blank	Total/NA	Water	624.1
LCS 860-169234/3	Lab Control Sample	Total/NA	Water	624.1
LCSD 860-169234/4	Lab Control Sample Dup	Total/NA	Water	624.1
GC/MS Semi VOA				
Prep Batch: 169191				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method
885-7077-1	RG-North20240626	Total/NA	Water	3511
885-7077-2	RG-South20240627	Total/NA	Water	3511
Analysis Batch: 16935	9			
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method
885-7077-1	RG-North20240626	Total/NA	Water	625.1
Lab Sample ID	Client Sample ID RG-South20240627	Prep Type Total/NA	Matrix Water	<u>Method</u> 625.1
Lab Sample ID 885-7077-2 C Semi VOA	Client Sample ID			
Lab Sample ID	Client Sample ID			
Lab Sample ID 885-7077-2 GC Semi VOA	Client Sample ID			
Lab Sample ID 885-7077-2 BC Semi VOA Prep Batch: 169312	Client Sample ID RG-South20240627	Total/NA	Water	625.1
Lab Sample ID 885-7077-2 BC Semi VOA Prep Batch: 169312 Lab Sample ID	Client Sample ID RG-South20240627 Client Sample ID	Total/NA Prep Type	Water	625.1 Method
Lab Sample ID 885-7077-2 BC Semi VOA Prep Batch: 169312 Lab Sample ID 885-7077-1	Client Sample ID RG-South20240627 Client Sample ID RG-North20240626	Total/NA Prep Type Total/NA	Water Matrix Water	625.1 <u>Method</u> 3511
Lab Sample ID 885-7077-2 GC Semi VOA Prep Batch: 169312 Lab Sample ID 885-7077-1 885-7077-2	Client Sample ID RG-South20240627 Client Sample ID RG-North20240626 RG-South20240627	Total/NA Prep Type Total/NA Total/NA	Water Matrix Water Water Water Water	625.1 625.1 3511 3511
Lab Sample ID 885-7077-2 GC Semi VOA Prep Batch: 169312 Lab Sample ID 885-7077-1 885-7077-2 MB 860-169312/1-A	Client Sample ID RG-South20240627	Total/NA Total/NA Total/NA Total/NA Total/NA	Water Matrix Water Water Water Water	625.1 Method 3511 3511 3511
Lab Sample ID 885-7077-2 BC Semi VOA Prep Batch: 169312 Lab Sample ID 885-7077-1 885-7077-2 MB 860-169312/1-A LCS 860-169312/2-A	Client Sample ID RG-South20240627 Client Sample ID RG-North20240626 RG-South20240627 Method Blank Lab Control Sample Lab Control Sample Dup	Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA	Water Matrix Water Water Water Water Water	625.1 Method 3511 3511 3511 3511
Lab Sample ID 885-7077-2 BC Semi VOA Prep Batch: 169312 Lab Sample ID 885-7077-1 885-7077-2 MB 860-169312/1-A LCS 860-169312/2-A LCSD 860-169312/3-A	Client Sample ID RG-South20240627 Client Sample ID RG-North20240626 RG-South20240627 Method Blank Lab Control Sample Lab Control Sample Dup	Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA	Water Matrix Water Water Water Water Water	625.1 Method 3511 3511 3511 3511
Lab Sample ID 885-7077-2 BC Semi VOA Prep Batch: 169312 Lab Sample ID 885-7077-1 885-7077-2 MB 860-169312/1-A LCS 860-169312/2-A LCSD 860-169312/3-A Analysis Batch: 16936	Client Sample ID RG-South20240627 Client Sample ID RG-North20240626 RG-South20240627 Method Blank Lab Control Sample Lab Control Sample Dup 9	Total/NA Prep Type Total/NA Total/NA Total/NA Total/NA Total/NA	Water Matrix Water Water Water Water Water	625.1 3511 3511 3511 3511 3511 3511
Lab Sample ID 885-7077-2 BC Semi VOA Prep Batch: 169312 Lab Sample ID 885-7077-1 885-7077-2 MB 860-169312/1-A LCS 860-169312/2-A LCSD 860-169312/3-A Analysis Batch: 16936 Lab Sample ID	Client Sample ID RG-South20240627 Client Sample ID RG-North20240626 RG-South20240627 Method Blank Lab Control Sample Lab Control Sample Dup Client Sample ID Client Sample ID	Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA	Water Matrix Water Water Water Water Water Water Matrix	625.1 Method 3511 3511 3511 3511 3511 3511 Method
Lab Sample ID 885-7077-2 BC Semi VOA Prep Batch: 169312 Lab Sample ID 885-7077-1 885-7077-2 MB 860-169312/1-A LCS 860-169312/2-A LCSD 860-169312/3-A Analysis Batch: 16936 Lab Sample ID 885-7077-1	Client Sample ID RG-South20240627 Client Sample ID RG-North20240626 RG-South20240627 Method Blank Lab Control Sample Lab Control Sample Lab Control Sample Dup Client Sample ID RG-North20240626	Total/NA Prep Type Total/NA Total/NA	Matrix Water	Method 3511 3511 3511 3511 3511 3511 3511 3511 3511 3531 3531
Lab Sample ID 885-7077-2 GC Semi VOA Prep Batch: 169312 Lab Sample ID 885-7077-1 885-7077-2 MB 860-169312/1-A LCS 860-169312/2-A LCSD 860-169312/3-A Analysis Batch: 16936 Lab Sample ID 885-7077-1 885-7077-2	Client Sample ID RG-South20240627 Client Sample ID RG-North20240626 RG-South20240627 Method Blank Lab Control Sample Lab Control Sample Dup 9 Client Sample ID RG-North20240626 RG-South20240627	Prep Type Total/NA	Mater Matrix Water Water	Method 3511 3511 3511 3511 3511 3511 3511 3511 3511 3511 3511 3513 608.3

Prep Batch: 169461

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-7077-1	RG-North20240626	Total/NA	Water	3510C	
885-7077-2	RG-South20240627	Total/NA	Water	3510C	
MB 860-169461/1-A	Method Blank	Total/NA	Water	3510C	
LCS 860-169461/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 860-169461/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	

Analysis Batch: 169649

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
885-7077-1	RG-North20240626	Total/NA	Water	8081B_LL	169461
885-7077-2	RG-South20240627	Total/NA	Water	8081B_LL	169461
MB 860-169461/1-A	Method Blank	Total/NA	Water	8081B_LL	169461

GC Semi VOA (Continued)

Analysis Batch: 169649 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 860-169461/2-A	Lab Control Sample	Total/NA	Water	8081B_LL	169461
LCSD 860-169461/3-A	Lab Control Sample Dup	Total/NA	Water	8081B_LL	169461
rep Batch: 169818					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-7077-1	RG-North20240626	Total/NA	Water	3511	
885-7077-2	RG-South20240627	Total/NA	Water	3511	
MB 860-169818/1-A	Method Blank	Total/NA	Water	3511	
LCS 860-169818/2-A	Lab Control Sample	Total/NA	Water	3511	
LCSD 860-169818/3-A	Lab Control Sample Dup	Total/NA	Water	3511	
nalysis Batch: 169920 - Lab Sample ID) Client Sample ID	Prep Туре	Matrix	Method	Prep Batch
MB 860-169818/1-A	Method Blank	Total/NA	Water	608.3	169818
LCS 860-169818/2-A	Lab Control Sample	Total/NA	Water	608.3	169818
LCSD 860-169818/3-A	Lab Control Sample Dup	Total/NA	Water	608.3	169818
analysis Batch: 170091	I				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
885-7077-1	RG-North20240626	Total/NA	Water	608.3	169818
885-7077-2	RG-South20240627	Total/NA	Water	608.3	169818

HPLC/IC

Analysis Batch: 7687

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
885-7077-1	RG-North20240626	Total/NA	Water	300.0	
885-7077-2	RG-South20240627	Total/NA	Water	300.0	
MB 885-7687/10	Method Blank	Total/NA	Water	300.0	
MB 885-7687/58	Method Blank	Total/NA	Water	300.0	
LCS 885-7687/11	Lab Control Sample	Total/NA	Water	300.0	
LCS 885-7687/59	Lab Control Sample	Total/NA	Water	300.0	
MRL 885-7687/9	Lab Control Sample	Total/NA	Water	300.0	

LCMS

Prep Batch: 779486

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-7077-1	RG-North20240626	Total/NA	Water	1633	
885-7077-1 - RA	RG-North20240626	Total/NA	Water	1633	
885-7077-2	RG-South20240627	Total/NA	Water	1633	
885-7077-2 - RA	RG-South20240627	Total/NA	Water	1633	
885-7077-3 - RA	EB-20240627	Total/NA	Water	1633	
885-7077-3	EB-20240627	Total/NA	Water	1633	
MB 320-779486/1-A	Method Blank	Total/NA	Water	1633	
MB 320-779486/1-A - RA	Method Blank	Total/NA	Water	1633	
LCS 320-779486/3-A - RA	Lab Control Sample	Total/NA	Water	1633	
LCS 320-779486/3-A	Lab Control Sample	Total/NA	Water	1633	
LCSD 320-779486/4-A - RA	Lab Control Sample Dup	Total/NA	Water	1633	
LCSD 320-779486/4-A	Lab Control Sample Dup	Total/NA	Water	1633	
LLCS 320-779486/2-A - RA	Lab Control Sample	Total/NA	Water	1633	
LLCS 320-779486/2-A	Lab Control Sample	Total/NA	Water	1633	

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project/Site: CMC

Job ID: 885-7077-1

LCMS

Analysis Batch: 780306

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-7077-1	RG-North20240626	Total/NA	Water	Draft-4 1633	779486
885-7077-2	RG-South20240627	Total/NA	Water	Draft-4 1633	779486
885-7077-3	EB-20240627	Total/NA	Water	Draft-4 1633	779486
MB 320-779486/1-A	Method Blank	Total/NA	Water	Draft-4 1633	779486
LCS 320-779486/3-A	Lab Control Sample	Total/NA	Water	Draft-4 1633	779486
LCSD 320-779486/4-A	Lab Control Sample Dup	Total/NA	Water	Draft-4 1633	779486
LLCS 320-779486/2-A	Lab Control Sample	Total/NA	Water	Draft-4 1633	779486
Analysis Batch: 780601					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-7077-1 - RA	RG-North20240626	Total/NA	Water	Draft-4 1633	779486
885-7077-2 - RA	RG-South20240627	Total/NA	Water	Draft-4 1633	779486
885-7077-3 - RA	EB-20240627	Total/NA	Water	Draft-4 1633	779486
MB 320-779486/1-A - RA	Method Blank	Total/NA	Water	Draft-4 1633	779486
LCS 320-779486/3-A - RA	Lab Control Sample	Total/NA	Water	Draft-4 1633	779486
LCSD 320-779486/4-A - RA	Lab Control Sample Dup	Total/NA	Water	Draft-4 1633	779486
LLCS 320-779486/2-A - RA	Lab Control Sample	Total/NA	Water	Draft-4 1633	779486
Specialty Organics					
Prep Batch: 777390					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
885-7077-1	RG-North20240626	Total/NA	Water	HRMS-Sep	
885-7077-2	RG-South20240627	Total/NA	Water	HRMS-Sep	
MB 320-777390/1-A	Method Blank	Total/NA	Water	HRMS-Sep	
LCS 320-777390/2-A	Lab Control Sample	Total/NA	Water	HRMS-Sep	
LCSD 320-777390/3-A	Lab Control Sample Dup	Total/NA	Water	HRMS-Sep	
Analysis Batch: 778376					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
885-7077-1	RG-North20240626	Total/NA	Water	1668A	777390
885-7077-2	RG-South20240627	Total/NA	Water	1668A	777390

000-1011-1	10-1011120240020	10101/11/1	Water	1000/1
885-7077-2	RG-South20240627	Total/NA	Water	1668A
MB 320-777390/1-A	Method Blank	Total/NA	Water	1668A
LCS 320-777390/2-A	Lab Control Sample	Total/NA	Water	1668A
LCSD 320-777390/3-A	Lab Control Sample Dup	Total/NA	Water	1668A
 -				

Metals

Prep Batch: 7782

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batc
885-7077-1	RG-North20240626	Total Recoverable	Water	200.2	
885-7077-2	RG-South20240627	Total Recoverable	Water	200.2	
MB 885-7782/1-A	Method Blank	Total Recoverable	Water	200.2	
LCS 885-7782/6-A	Lab Control Sample	Total Recoverable	Water	200.2	
LLCS 885-7782/5-A	Lab Control Sample	Total Recoverable	Water	200.2	

Analysis Batch: 8057

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
885-7077-1	RG-North20240626	Total Recoverable	Water	200.7 Rev 4.4	7782
885-7077-2	RG-South20240627	Total Recoverable	Water	200.7 Rev 4.4	7782
MB 885-7782/1-A	Method Blank	Total Recoverable	Water	200.7 Rev 4.4	7782
LCS 885-7782/6-A	Lab Control Sample	Total Recoverable	Water	200.7 Rev 4.4	7782

Eurofins Albuquerque

777390 777390 777390

Prep Type

Total/NA

Prep Type

Dissolved

Dissolved

Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Total Recoverable

Total Recoverable

Total Recoverable

Client Sample ID

Lab Control Sample

Lab Control Sample

Client Sample ID

RG-North20240626

RG-South20240627

Lab Control Sample

Lab Control Sample

Lab Control Sample

Client Sample ID

RG-North20240626

RG-South20240627

Method Blank

Job ID: 885-7077-1

Prep Batch

Prep Batch

Prep Batch

7782

Method

Method

200.8

200.8

200.8

200.8

200.8

200.8

Method

SM 2340B

SM 2340B

200.7 Rev 4.4

200.7 Rev 4.4

Matrix

Water

Water

Matrix

Water

Water

Water

Water

Water

Water

Matrix

Water

Water

5

8
9

Analysis Batch: 8191

Analysis Batch: 8100

Metals (Continued)

Lab Sample ID

Lab Sample ID

MB 885-8085/19

LCS 885-8085/20

MRL 885-8085/17

MRL 885-8085/18

Lab Sample ID

885-7077-1

885-7077-2

885-7077-1

885-7077-2

LLCS 885-7782/5-A

Analysis Batch: 8085

MRL 885-8057/14

Analysis Batch: 8057 (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch	1
885-7077-1	RG-North20240626	Total Recoverable	Water	200.7 Rev 4.4	7782	
885-7077-2	RG-South20240627	Total Recoverable	Water	200.7 Rev 4.4	7782	
MRL 885-8191/13	Lab Control Sample	Total/NA	Water	200.7 Rev 4.4		

Prep Batch: 670850

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
885-7077-1	RG-North20240626	Total/NA	Water	200.7/200.8	
885-7077-2	RG-South20240627	Total/NA	Water	200.7/200.8	
MB 160-670850/1-A	Method Blank	Total/NA	Water	200.7/200.8	
LCS 160-670850/2-A	Lab Control Sample	Total/NA	Water	200.7/200.8	
885-7077-1 MS	RG-North20240626	Total/NA	Water	200.7/200.8	
885-7077-1 MSD	RG-North20240626	Total/NA	Water	200.7/200.8	
885-7077-2 MS	RG-South20240627	Total/NA	Water	200.7/200.8	
885-7077-2 MSD	RG-South20240627	Total/NA	Water	200.7/200.8	

Analysis Batch: 671639

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
885-7077-1	RG-North20240626	Total/NA	Water	200.8	670850
885-7077-2	RG-South20240627	Total/NA	Water	200.8	670850
MB 160-670850/1-A	Method Blank	Total/NA	Water	200.8	670850
LCS 160-670850/2-A	Lab Control Sample	Total/NA	Water	200.8	670850
885-7077-1 MS	RG-North20240626	Total/NA	Water	200.8	670850
885-7077-1 MSD	RG-North20240626	Total/NA	Water	200.8	670850
885-7077-2 MS	RG-South20240627	Total/NA	Water	200.8	670850
885-7077-2 MSD	RG-South20240627	Total/NA	Water	200.8	670850

General Chemistry

Analysis Batch: 7579

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
885-7077-1	RG-North20240626	Total/NA	Water	SM5210B	
885-7077-2	RG-South20240627	Total/NA	Water	SM5210B	

General Chemistry (Continued)

Analysis Batch: 7579 (Continued)

885-7077-2

885-7077-2 DU

RG-South20240627

RG-South20240627

nalysis Batch: 7579	(Continued)				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
USB 885-7579/1	Method Blank	Total/NA	Water	SM5210B	
LCS 885-7579/2	Lab Control Sample	Total/NA	Water	SM5210B	
				002.102	
nalysis Batch: 7815					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-7077-1	RG-North20240626	Total/NA	Water	2540C	·
MB 885-7815/1	Method Blank	Total/NA	Water	2540C	
LCS 885-7815/2	Lab Control Sample	Total/NA	Water	2540C	
nalysis Batch: 7827					
-		Dura Tara	Madain	N - 411	Dury Datab
Lab Sample ID 885-7077-1	Client Sample ID RG-North20240626	Total/NA	Matrix Water	Method SM 2540D	Prep Batch
885-7077-2	RG-South20240627	Total/NA	Water Water	SM 2540D	
MB 885-7827/1 LCSSRM 885-7827/2	Method Blank	Total/NA Total/NA		SM 2540D SM 2540D	
LUGGRIVI 000-1021/2	Lab Control Sample	TOTAI/NA	Water	3IVI 2040D	
nalysis Batch: 7881					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-7077-2	RG-South20240627	Total/NA	Water	2540C	
MB 885-7881/1	Method Blank	Total/NA	Water	2540C	
LCS 885-7881/2	Lab Control Sample	Total/NA	Water	2540C	
nalysis Batch: 7985					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
885-7077-1	RG-North20240626	Total/NA	Water	1664B	
885-7077-2	RG-South20240627	Total/NA	Water	1664B	
MB 885-7985/1	Method Blank	Total/NA	Water	1664B	
LCS 885-7985/2	Lab Control Sample	Total/NA	Water	1664B	
LCSD 885-7985/3	Lab Control Sample Dup	Total/NA	Water	1664B	
rep Batch: 8010					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-7077-1	RG-North20240626	Total/NA	Water	351.2	
885-7077-2	RG-South20240627	Total/NA	Water	351.2	
MB 885-8010/3-A	Method Blank	Total/NA	Water	351.2	
LCS 885-8010/5-A	Lab Control Sample	Total/NA	Water	351.2	
LLCS 885-8010/4-A	Lab Control Sample	Total/NA	Water	351.2	
nalysis Batch: 8084					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-7077-1	RG-North20240626	Total/NA	Water	5220D	
MB 885-8084/4	Method Blank	Total/NA	Water	5220D	
LCS 885-8084/5	Lab Control Sample	Total/NA	Water	5220D	
MRL 885-8084/6	Lab Control Sample	Total/NA	Water	5220D	
nalysis Batch: 8154	·				
Lab Sample ID 885-7077-1	Client Sample ID RG-North20240626	Prep Type Total/NA	Matrix Water	Method SM 4500 H+ B	Prep Batch
000-7077-1	130-110111120240020	TOTAI/INA	vvalei	SIVI 4300 FF B	

Eurofins Albuquerque

SM 4500 H+ B

SM 4500 H+ B

Total/NA

Total/NA

Water

Water

Lab Control Sample

Lab Control Sample

Job ID: 885-7077-1

General Chemistry

Prep Batch: 8218

885-7077-1 RG-North20240626 Dissolved Water 365.1 827 885-7077-1 RG-North20240626 Total/NA Water 365.1 827 885-7077-2 RG-South20240627 Dissolved Water 365.1 827 885-7077-2 RG-South20240627 Total/NA Water 365.1 827 885-7077-2 RG-South20240627 Total/NA Water 365.1 827 MB 885-8218/1-A Method Blank Total/NA Water 365.1 827 LCS 885-8218/2-A Lab Control Sample Total/NA Water 365.1 827 MRL 885-8218/7-A Lab Control Sample Total/NA Water 365.1 827 malysis Batch: 8585 S85	Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batc
BBS-7077-2 RG-South20240627 Dissolved Water 365.2/365.3/365 BBS-7077-2 RG-South20240627 Total/NA Water 365.2/365.3/365 BBS-8218/1-A Method Blank Total/NA Water 365.2/365.3/365 CS 885-8218/2-A Lab Control Sample Total/NA Water 365.2/365.3/365 MRL 885-8218/7-A Lab Control Sample Total/NA Water 365.2/365.3/365 malysis Batch: 8500 Sample ID Client Sample ID Prep Type Matrix Method Prep Batt 385-7077-1 RG-North20240626 Dissolved Water 365.1 822 385-7077-2 RG-South20240627 Dissolved Water 365.1 823 385-7077-2 RG-South20240627 Total/NA Water 365.1 822 385-7077-2 RG-South20240627 Total/NA Water 365.1 823 385-7077-2 RG-South20240627 Total/NA Water 365.1 823 385-7077-2 RG-South20240627 Total/NA <t< td=""><td>385-7077-1</td><td>RG-North20240626</td><td>Dissolved</td><td>Water</td><td>365.2/365.3/365</td><td></td></t<>	385-7077-1	RG-North20240626	Dissolved	Water	365.2/365.3/365	
S85-7077-2 RG-South20240627 Total/NA Water 365.2/365.3/365 WB 885-8218/1-A Method Blank Total/NA Water 365.2/365.3/365 LCS 886-8218/2-A Lab Control Sample Total/NA Water 365.2/365.3/365 malysis Batch: 8500 Total/NA Water 365.2/365.3/365 Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Bate 885-7077-1 RG-North20240626 Total/NA Water 365.1 822 885-7077-2 RG-South20240627 Dissolved Water 365.1 822 885-7077-2 RG-South20240627 Total/NA Water 365.1 822 885-7077-2 RG-South20240627 Total/NA Water 365.1 822 885-8218/7-A Lab Control Sample Total/NA Water 365.1 822 885-8218/7-A Lab Control Sample Total/NA Water 365.1 822 885-8218/7-A Lab Control Sample Total/NA Water 365.1	885-7077-1	RG-North20240626	Total/NA	Water	365.2/365.3/365	
NB 885-8218/1-AMethod BlankTotal/NAWater365.2/365.3/365LCS 885-8218/2-ALab Control SampleTotal/NAWater365.2/365.3/365MRL 885-8218/7-ALab Control SampleTotal/NAWater365.2/365.3/365malysis Batch:85500Lab Sample IDClient Sample IDPrep TypeMatrixMethodPrep Batrix285-7077-1RG-North20240626DissolvedWater365.1822385-7077-2RG-South20240627Total/NAWater365.1822385-7077-2RG-South20240627Total/NAWater365.1822885-8218/1-AMethod BlankTotal/NAWater365.1822KR 885-8218/1-ALab Control SampleTotal/NAWater365.1822KR 885-8218/1-ALab Control SampleTotal/NAWater365.1822KR 885-8218/1-ALab Control SampleTotal/NAWater365.1822KR 885-8218/1-ALab Control SampleTotal/NAWater351.2807885-7077-2RG-South20240627Total/NAWater351.2807885-7077-2RG-South20240627Total/NAWater351.2807885-7077-2RG-South20240627Total/NAWater351.2807885-7077-2RG-South20240627Total/NAWater351.2807Lab Sample IDClient SampleTotal/NAWater351.2807Lab Sample IDClient SampleTotal/NAW	885-7077-2	RG-South20240627	Dissolved	Water	365.2/365.3/365	
LCS 885-8218/2-A Lab Control Sample Total/NA Water 365.2/365.3/365 MRL 885-8218/7-A Lab Control Sample Total/NA Water 365.2/365.3/365 malysis Batch: 8500 Eab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch: 827 385-7077-1 RG-North20240626 Total/NA Water 365.1 827 385-7077-1 RG-North20240627 Dissolved Water 365.1 827 385-7077-2 RG-South20240627 Dissolved Water 365.1 827 385-7077-2 RG-South20240627 Total/NA Water 365.1 827 385-7077-2 RG-South20240627 Total/NA Water 365.1 827 385-7077-2 RG-South20240627 Total/NA Water 365.1 827 VIRL 885-8218/1-A Lab Control Sample Total/NA Water 365.1 827 VIRL 885-8218/1-A Lab Control Sample Total/NA Water 365.1 827 MRL 885-8218/1-A Lab Co	885-7077-2	RG-South20240627	Total/NA	Water	365.2/365.3/365	
VIRL 885-8218/7-A Lab Control Sample Total/NA Water 365.2/365.3/365 Lab Sample ID Client Sample ID RG-North20240626 Dissolved Water 365.1 827 S85-7077-1 RG-North20240626 Total/NA Water 365.1 827 385-7077-2 RG-South20240627 Dissolved Water 365.1 827 385-7077-2 RG-South20240627 Total/NA Water 365.1 827 385-7077-4 Lab Control Sample Total/NA Water 365.1 827 analysis Batch: 8585 Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Bate 385-7077-2 RG-South20240627 Total/NA Water 351.2 807 3855-7077-2	MB 885-8218/1-A	Method Blank	Total/NA	Water	365.2/365.3/365	
Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Bate 385-7077-1 RG-North20240626 Dissolved Water 366.1 62: 385-7077-1 RG-North20240626 Total/NA Water 366.1 62: 385-7077-2 RG-South20240627 Dissolved Water 366.1 62: 385-7077-2 RG-South20240627 Total/NA Water 365.1 62: 385-7077-2 RG-South20240627 Total/NA Water 365.1 62: XIB 885-8218/1-A Method Blank Total/NA Water 365.1 62: LCS 885-8218/1-A Lab Control Sample Total/NA Water 365.1 62: LCS 885-8218/1-A Lab Control Sample Total/NA Water 365.1 82: LCS 885-8218/1-A Lab Control Sample Total/NA Water 365.1 82: MRL 885-8218/1-A Lab Control Sample Total/NA Water 365.1 82: analysis Batch: 8585 Sample ID Client Sample ID Prep Type Matrix Method Prep Bate <td>_CS 885-8218/2-A</td> <td>Lab Control Sample</td> <td>Total/NA</td> <td>Water</td> <td>365.2/365.3/365</td> <td></td>	_CS 885-8218/2-A	Lab Control Sample	Total/NA	Water	365.2/365.3/365	
Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Bate 885-7077-1 RG-North20240626 Dissolved Water 365.1 827 885-7077-1 RG-North20240626 Total/NA Water 365.1 827 885-7077-2 RG-South20240627 Dissolved Water 365.1 827 885-7077-2 RG-South20240627 Total/NA Water 365.1 827 885-7077-2 RG-South20240627 Total/NA Water 365.1 827 885-7077-2 RG-South20240627 Total/NA Water 365.1 827 885-8218/1-A Method Blank Total/NA Water 365.1 827 NRL 885-8218/1-A Lab Control Sample Total/NA Water 365.1 827 MRL 885-8218/1-A Lab Control Sample Total/NA Water 365.1 827 MRL 885-8218/1-A Lab Control Sample Total/NA Water 351.2 807 B85-7077-2 RG-South20240627 Total/NA <td>MRL 885-8218/7-A</td> <td>Lab Control Sample</td> <td>Total/NA</td> <td>Water</td> <td>365.2/365.3/365</td> <td></td>	MRL 885-8218/7-A	Lab Control Sample	Total/NA	Water	365.2/365.3/365	
885-7077-1 RG-North20240626 Dissolved Water 365.1 822 885-7077-1 RG-North20240626 Total/NA Water 365.1 822 885-7077-2 RG-South20240627 Dissolved Water 365.1 822 885-7077-2 RG-South20240627 Dissolved Water 365.1 822 885-7077-2 RG-South20240627 Total/NA Water 365.1 822 885-8218/1-A Method Blank Total/NA Water 365.1 822 MRL 885-8218/2-A Lab Control Sample Total/NA Water 365.1 822 MRL 885-8218/7-A Lab Control Sample Total/NA Water 365.1 822 nalysis Batch: 8585 Total/NA Water 365.1 822 Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Bate 885-7077-2 RG-South20240627 Total/NA Water 351.2 807 LCS 885-8010/3-A Lab Control Sample <td< td=""><td>nalysis Batch: 8500</td><td></td><td></td><td></td><td></td><td></td></td<>	nalysis Batch: 8500					
885-7077-1 RG-North20240626 Total/NA Water 365.1 822 885-7077-2 RG-South20240627 Dissolved Water 365.1 822 885-7077-2 RG-South20240627 Total/NA Water 365.1 822 885-7077-2 RG-South20240627 Total/NA Water 365.1 822 MB 885-8218/1-A Method Blank Total/NA Water 365.1 822 LCS 885-8218/7-A Lab Control Sample Total/NA Water 365.1 822 nalysis Batch: 8585 Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Bate 885-7077.1 RG-South20240626 Total/NA Water 351.2 807 885-7077.2 RG-South20240627 Total/NA Water 351.2 807 LCS 885-8010/3-A Lab Control Sample Total/NA Water 351.2 807 LCS 885-8010/3-A Lab Control Sample Total/NA Water 351.2 807 LCS 885-8010/4-A	Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batc
885-7077-2 RG-South20240627 Dissolved Water 365.1 822 885-7077-2 RG-South20240627 Total/NA Water 365.1 822 885-8218/1-A Method Blank Total/NA Water 365.1 822 ALS 885-8218/1-A Lab Control Sample Total/NA Water 365.1 822 ALS 885-8218/7-A Lab Control Sample Total/NA Water 365.1 822 ALR 885-8218/7-A Lab Control Sample Total/NA Water 365.1 822 Alges 885-8218/7-A Lab Control Sample Total/NA Water 365.1 822 Alges 85-8218/7-A Lab Control Sample ID Prep Type Matrix Method Prep Bate 885-7077-1 RG-North20240626 Total/NA Water 351.2 807 885-8010/3-A Method Blank Total/NA Water 351.2 807 LCS 885-8010/3-A Lab Control Sample Total/NA Water 351.2 807 LCS 885-8010/3-A Lab Control Sam	385-7077-1	RG-North20240626	Dissolved	Water	365.1	821
885-7077-2 RG-South20240627 Total/NA Water 365.1 822 MB 885-8218/1-A Method Blank Total/NA Water 365.1 822 .CS 885-8218/2-A Lab Control Sample Total/NA Water 365.1 822 MRL 885-8218/7-A Lab Control Sample Total/NA Water 365.1 822 malysis Batch: 8585 State Method Prep Bate Method Prep Bate .ab Sample ID Client Sample ID Prep Type Matrix Method Prep Bate .ab Sample ID Client Sample ID Prep Type Matrix Method Prep Bate .ab Sample ID Client Sample ID Prep Type Matrix Method Prep Bate .ab Sample ID Client Sample ID Total/NA Water 351.2 807 .ab Sas-8010/3-A Method Blank Total/NA Water 351.2 807 .cS 885-8010/3-A Lab Control Sample Total/NA Water 351.2 807 .cS 885-8010/3-A Lab Control Sample Total/NA Water 351.2 807	385-7077-1	RG-North20240626	Total/NA	Water	365.1	82
MB 885-8218/1-AMethod BlankTotal/NAWater365.1822LCS 885-8218/2-ALab Control SampleTotal/NAWater365.1822MRL 885-8218/7-ALab Control SampleTotal/NAWater365.1822malysis Batch: 8585Sample IDClient Sample IDPrep TypeMatrixMethodPrep Batt885-7077-1RG-North20240626Total/NAWater351.2800885-7077-2RG-South20240627Total/NAWater351.2800LCS 885-8010/3-AMethod BlankTotal/NAWater351.2800LCS 885-8010/5-ALab Control SampleTotal/NAWater351.2800LCS 885-8010/4-ALab Control SampleTotal/NAWater351.2800LLS 885-8010/4-ALab Control SampleTotal/NAWater351.2800LLS 885-8010/4-ALab Control SampleTotal/NAWater351.2800LLS 885-8010/4-ALab Control SampleTotal/NAWater351.2800RG-South20240627	385-7077-2	RG-South20240627	Dissolved	Water	365.1	82
Inclusion LinkInclusion LinkInclus	385-7077-2	RG-South20240627	Total/NA	Water	365.1	82
MRL 885-8218/7-ALab Control SampleTotal/NAWater365.1827nalysis Batch: 8585Prep TypeMatrixMethodPrep BateLab Sample IDClient Sample IDPrep DypeMatrixMethodPrep Bate385-7077-1RG-North20240626Total/NAWater351.2807385-7077-2RG-South20240627Total/NAWater351.2807MB 885-8010/3-AMethod BlankTotal/NAWater351.2807LCS 885-8010/5-ALab Control SampleTotal/NAWater351.2807LCS 885-8010/4-ALab Control SampleTotal/NAWater351.2807Lab Sample IDClient Sample IDPrep TypeMatrixMethodPrep Bate885-7077-2RG-South20240627Total/NAWater351.2807RG-South20240627Total/NAWater351.2807	MB 885-8218/1-A	Method Blank	Total/NA	Water	365.1	82
Lab Sample IDClient Sample IDPrep TypeMatrixMethodPrep Batt885-7077-1RG-North20240626Total/NAWater351.2807885-7077-2RG-South20240627Total/NAWater351.2807MB 885-8010/3-AMethod BlankTotal/NAWater351.2807LCS 885-8010/5-ALab Control SampleTotal/NAWater351.2807LLCS 885-8010/4-ALab Control SampleTotal/NAWater351.2807malysis Batch: 9076Sample IDPrep TypeMatrixMethodPrep Batt885-7077-2RG-South20240627Total/NAWater5220DPrep Batt	LCS 885-8218/2-A	Lab Control Sample	Total/NA	Water	365.1	82
Lab Sample IDClient Sample IDPrep TypeMatrixMethodPrep Bate885-7077-1RG-North20240626Total/NAWater351.2807385-7077-2RG-South20240627Total/NAWater351.2807WB 885-8010/3-AMethod BlankTotal/NAWater351.2807LCS 885-8010/5-ALab Control SampleTotal/NAWater351.2807LCS 885-8010/4-ALab Control SampleTotal/NAWater351.2807LLCS 885-8010/4-ALab Control SampleTotal/NAWater351.2807Lab Sample IDClient Sample IDPrep TypeMatrixMethodPrep Bate885-7077-2RG-South20240627Total/NAWater5220DPrep Bate	MRL 885-8218/7-A	Lab Control Sample	Total/NA	Water	365.1	82
885-7077-1 RG-North20240626 Total/NA Water 351.2 807 885-7077-2 RG-South20240627 Total/NA Water 351.2 807 MB 885-8010/3-A Method Blank Total/NA Water 351.2 807 LCS 885-8010/5-A Lab Control Sample Total/NA Water 351.2 807 LLCS 885-8010/4-A Lab Control Sample Total/NA Water 351.2 807 nalysis Batch: 9076 Item Sample ID Client Sample ID Prep Type Matrix Method Prep Bater 885-7077-2 RG-South20240627 Total/NA Water 5220D Prep Bater	nalysis Batch: 8585					
885-7077-2RG-South20240627Total/NAWater351.2807MB 885-8010/3-AMethod BlankTotal/NAWater351.2807LCS 885-8010/5-ALab Control SampleTotal/NAWater351.2807LLCS 885-8010/4-ALab Control SampleTotal/NAWater351.2807nalysis Batch: 9076Statch: 9076Prep TypeMatrixMethodPrep Batch885-7077-2RG-South20240627Total/NAWater5220DPrep Batch	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Bate
MB 885-8010/3-AMethod BlankTotal/NAWater351.2807LCS 885-8010/5-ALab Control SampleTotal/NAWater351.2807LLCS 885-8010/4-ALab Control SampleTotal/NAWater351.2807malysis Batch: 9076Sample IDClient Sample IDPrep TypeMatrixMethodPrep Batch885-7077-2RG-South20240627Total/NAWater5220D907	385-7077-1	RG-North20240626	Total/NA	Water	351.2	80
LCS 885-8010/5-ALab Control SampleTotal/NAWater351.280LLCS 885-8010/4-ALab Control SampleTotal/NAWater351.280nalysis Batch: 9076Prep TypeMatrixMethodPrep Bate285-7077-2RG-South20240627Total/NAWater5220D90	385-7077-2	RG-South20240627	Total/NA	Water	351.2	80
LLCS 885-8010/4-A Lab Control Sample Total/NA Water 351.2 80 halysis Batch: 9076 Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Bate 385-7077-2 RG-South20240627 Total/NA Water 5220D	MB 885-8010/3-A	Method Blank	Total/NA	Water	351.2	80
nalysis Batch: 9076Prep TypeMatrixMethodPrep BateLab Sample IDClient Sample IDPrep TypeMatrixMethodPrep Bate385-7077-2RG-South20240627Total/NAWater5220D	_CS 885-8010/5-A	Lab Control Sample	Total/NA	Water	351.2	80
Lab Sample IDClient Sample IDPrep TypeMatrixMethodPrep Bate385-7077-2RG-South20240627Total/NAWater5220D	LCS 885-8010/4-A	Lab Control Sample	Total/NA	Water	351.2	80
385-7077-2 RG-South20240627 Total/NA Water 5220D	nalysis Batch: 9076					
						Prep Bate
MB 885-9076/4 Method Blank Total/NA Water 5220D	885-7077-2	RG-South20240627	Total/NA	Water	5220D	
	MB 885-9076/4	Method Blank	Total/NA	Water	5220D	

Rad

Prep Batch: 669229

LCS 885-9076/5

MRL 885-9076/6

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-7077-1	RG-North20240626	Total/NA	Water	Evaporation	
885-7077-2	RG-South20240627	Total/NA	Water	Evaporation	
MB 160-669229/1-A	Method Blank	Total/NA	Water	Evaporation	
LCS 160-669229/2-A	Lab Control Sample	Total/NA	Water	Evaporation	
LCSB 160-669229/3-A	Lab Control Sample	Total/NA	Water	Evaporation	
885-7077-2 MS	RG-South20240627	Total/NA	Water	Evaporation	
885-7077-2 MSBT	RG-South20240627	Total/NA	Water	Evaporation	
885-7077-2 DU	RG-South20240627	Total/NA	Water	Evaporation	

Total/NA

Total/NA

Biology

Analysis Batch: 7536

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
885-7077-2	RG-South20240627	Total/NA	Water	9223B	
MB 885-7536/1	Method Blank	Total/NA	Water	9223B	

Eurofins Albuquerque

5220D

5220D

Water

Water

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project/Site: CMC

Client Sample ID: RG-North20240626 Date Collected: 06/26/24 15:05 Date Received: 06/27/24 14:37

Lab Sample ID: 885-7077-1

Matrix: Water

5 6 7

9

Batch		Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor		Analyst	Lab	or Analyzed
Total/NA	Analysis	624.1		1	169234	NA	EET HOU	07/03/24 02:47
otal/NA	Prep	3511			169191	DR	EET HOU	07/02/24 12:40
otal/NA	Analysis	625.1		1	169359	PXS	EET HOU	07/03/24 19:01
lotal/NA	Prep	3511			169312	DS	EET HOU	07/02/24 22:42
Total/NA	Analysis	608.3		1	169369	WP	EET HOU	07/03/24 14:47
Total/NA	Prep	3511			169818	DS	EET HOU	07/05/24 21:47
Total/NA	Analysis	608.3		1	170091	WP	EET HOU	07/14/24 13:40
Total/NA	Prep	3510C			169461	BH	EET HOU	07/03/24 13:50
lotal/NA	Analysis	8081B_LL		1	169649	WP	EET HOU	07/05/24 11:41
fotal/NA	Analysis	300.0		1	7687	JT	EET ALB	06/28/24 11:40
Total/NA	Prep	1633			779486	ATB	EET SAC	07/15/24 11:26
Total/NA	Analysis	Draft-4 1633		1	780306	SS	EET SAC	07/16/24 19:22
Total/NA	Prep	1633	RA		779486	ATB	EET SAC	07/15/24 11:26
Total/NA	Analysis	Draft-4 1633	RA	1	780601	SS	EET SAC	07/17/24 15:03
Total/NA	Prep	HRMS-Sep			777390	BLR	EET SAC	07/08/24 12:40
Total/NA	Analysis	1668A		1	778376	KT	EET SAC	07/12/24 04:49
Total Recoverable	Prep	200.2			7782		EET ALB	07/02/24 13:43
lotal Recoverable	Analysis	200.7 Rev 4.4		1	8057	JR	EET ALB	07/08/24 12:07
Total Recoverable	Prep	200.2			7782		EET ALB	07/02/24 13:43
Total Recoverable	Analysis	200.7 Rev 4.4		1	8191		EET ALB	07/10/24 15:01
Dissolved	Analysis	200.8		1	8085		EET ALB	07/09/24 10:31
Fotal/NA	Prep	200.7/200.8			670850		EET SL	07/16/24 15:34
ōtal/NA	Analysis	200.8		2	671639		EET SL	07/19/24 14:39
otal Recoverable	Analysis	SM 2340B		1	8100	JF	EET ALB	07/09/24 15:25
īotal/NA	Analysis	1664B		1	7985	CO	EET ALB	07/08/24 09:19
īotal/NA	Analysis	2540C		1	7815	KB	EET ALB	07/02/24 14:21
Total/NA	Prep	351.2			8010		EET ALB	07/08/24 11:40
Total/NA	Analysis	351.2		1	8585	DL	EET ALB	07/09/24 13:01
Dissolved	Prep	365.2/365.3/365			8218		EET ALB	07/11/24 08:30
Dissolved	Analysis	365.1		1	8500		EET ALB	07/16/24 09:32
Fotal/NA	Prep	365.2/365.3/365			8218		EET ALB	07/11/24 08:30
īotal/NA	Analysis	365.1		1	8500		EET ALB	07/16/24 09:30
īotal/NA	Analysis	5220D		1	8084	KH	EET ALB	07/09/24 14:14
Total/NA	Analysis	SM 2540D		1	7827	KS	EET ALB	07/02/24 16:35
lotal/NA	Analysis	SM 4500 H+ B		1	8154	DL	EET ALB	07/09/24 22:21
lotal/NA	Analysis	SM5210B		1	7579	СО	EET ALB	06/28/24 11:05
lotal/NA	Prep	Evaporation			669229	KAC	EET SL	07/03/24 08:58
lotal/NA	Analysis	900.0		1	671146	CMM	EET SL	07/18/24 17:21
otal/NA	Analysis	Gross Alpha Adj		1	671821	FLC	EET SL	07/19/24 14:39

Dilution

Batch

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project/Site: CMC

Batch

Client Sample ID: RG-South20240627 Date Collected: 06/27/24 13:10 Date Received: 06/27/24 14:37

Batch

Lab Sample ID: 885-7077-2 Matrix: Water

Prepared

	Batch	Batch		Dilution	Batch			Prepared
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	624.1		1	169234	NA	EET HOU	07/03/24 03:08
Total/NA	Prep	3511			169191	DR	EET HOU	07/02/24 12:40
Total/NA	Analysis	625.1		1	169694	EM	EET HOU	07/05/24 15:46
Total/NA	Prep	3511			169312	DS	EET HOU	07/02/24 22:42
Total/NA	Analysis	608.3		1	169369	WP	EET HOU	07/03/24 14:58
Total/NA	Prep	3511			169818	DS	EET HOU	07/05/24 21:47
Total/NA	Analysis	608.3		1	170091	WP	EET HOU	07/14/24 13:51
Total/NA	Prep	3510C			169461	BH	EET HOU	07/03/24 13:50
Total/NA	Analysis	8081B_LL		1	169649	WP	EET HOU	07/05/24 12:10
Total/NA	Analysis	300.0		1	7687	JT	EET ALB	06/28/24 12:29
Total/NA	Prep	1633			779486	ATB	EET SAC	07/15/24 11:26
Total/NA	Analysis	Draft-4 1633		1	780306	SS	EET SAC	07/16/24 19:39
Total/NA	Prep	1633	RA		779486	ATB	EET SAC	07/15/24 11:26
Total/NA	Analysis	Draft-4 1633	RA	1	780601	SS	EET SAC	07/17/24 15:21
Total/NA	Prep	HRMS-Sep			777390	BLR	EET SAC	07/08/24 12:40
Total/NA	Analysis	1668A		1	778376	KT	EET SAC	07/12/24 05:52
Total Recoverable	Prep	200.2			7782	ТМ	EET ALB	07/02/24 13:43
Total Recoverable	Analysis	200.7 Rev 4.4		1	8057	JR	EET ALB	07/08/24 12:11
Total Recoverable	Prep	200.2			7782	ТМ	EET ALB	07/02/24 13:43
Total Recoverable	Analysis	200.7 Rev 4.4		1	8191	JR	EET ALB	07/10/24 15:03
Dissolved	Analysis	200.8		1	8085	ES	EET ALB	07/09/24 10:34
Total/NA	Prep	200.7/200.8			670850	JSM	EET SL	07/16/24 15:34
Total/NA	Analysis	200.8		2	671639	CGB	EET SL	07/19/24 15:03
Total Recoverable	Analysis	SM 2340B		1	8100	JF	EET ALB	07/09/24 15:25
Total/NA	Analysis	1664B		1	7985	СО	EET ALB	07/08/24 09:19
Total/NA	Analysis	2540C		1	7881	KS	EET ALB	07/03/24 12:52
Total/NA	Prep	351.2			8010	DL	EET ALB	07/08/24 11:40
Total/NA	Analysis	351.2		1	8585	DL	EET ALB	07/09/24 13:02
Dissolved	Prep	365.2/365.3/365			8218	ES	EET ALB	07/11/24 08:30
Dissolved	Analysis	365.1		1			EETALB	07/16/24 09:36
Total/NA	Prep	365.2/365.3/365			8218	ES	EET ALB	07/11/24 08:30
Total/NA	Analysis	365.1		1	8500		EETALB	07/16/24 09:34
Total/NA	Analysis	5220D		1	9076	КН	EET ALB	07/23/24 14:19
Total/NA	Analysis	SM 2540D		1	7827		EET ALB	07/02/24 16:35
Total/NA	Analysis	SM 4500 H+ B		1	8154	DL	EETALB	07/09/24 22:10
	-							
Total/NA	Analysis	SM5210B		1	7579		EET ALB	06/28/24 11:05
Total/NA	Prep	Evaporation		4	669229		EET SL	07/03/24 08:58
Total/NA	Analysis	900.0		1	671146		EET SL	07/18/24 17:21
Total/NA	Analysis	Gross Alpha Adj		1	671821		EET SL	07/19/24 15:03
Total/NA	Analysis	9223B		1	7536	SS	EET ALB	06/27/24 17:12

Lab Chronicle

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project/Site: CMC

Job ID: 885-7077-1

Client Sample ID: EB-20240627 Date Collected: 06/27/24 11:50 Date Received: 06/27/24 14:37

	Batch	Batch		Dilution	Batch			Prepared
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	1633			779486	ATB	EET SAC	07/15/24 11:26
Total/NA	Analysis	Draft-4 1633		1	780306	SS	EET SAC	07/16/24 19:57
Total/NA	Prep	1633	RA		779486	ATB	EET SAC	07/15/24 11:26
Total/NA	Analysis	Draft-4 1633	RA	1	780601	SS	EET SAC	07/17/24 15:38

Laboratory References:

= Mount Juliet, 12065 Lebanon Road, Mount Juliet, TN 37122

EET ALB = Eurofins Albuquerque, 4901 Hawkins NE, Albuquerque, NM 87109, TEL (505)345-3975

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

EET SAC = Eurofins Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

EET SL = Eurofins St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

Lab Sample ID: 885-7077-3

Accreditation/Certification Summary

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project/Site: CMC

Laboratory: Eurofins Albuquerque

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Progr	am	Identification Number	Expiration Date
regon	NELA	Р	NM100001	02-26-25
с ,	are included in this report, bu bes not offer certification.	·	ied by the governing authority. This lis	may include analyte
Analysis Method	Prep Method	Matrix	Analyte	
· · · · · · · · · · · · · · · · · · ·				
351.2	351.2	Water	Nitrogen, Total Kjeldahl	
,	351.2	Water Water	Nitrogen, Total Kjeldahl Chemical Oxygen Demand	I
351.2	351.2		0, 1	

Laboratory: Eurofins Houston

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date	
Arkansas DEQ	State	88-00759	08-03-24	
Florida	NELAP	E871002	06-30-25	
Louisiana (All)	NELAP	03054	06-30-25	
Oklahoma	NELAP	1306	08-31-24	
Oklahoma	State	2023-139	08-31-24	
Texas	NELAP	T104704215	06-30-25	
Texas	TCEQ Water Supply	T104704215	12-28-25	
USDA	US Federal Programs	525-23-79-79507	03-20-26	

Laboratory: Eurofins Sacramento

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	17-020	02-20-27
ANAB	Dept. of Defense ELAP	L2468	01-20-27
ANAB	Dept. of Energy	L2468.01	01-20-27
ANAB	ISO/IEC 17025	L2468	01-20-27
Arizona	State	AZ0708	08-11-24
Arkansas DEQ	State	88-0691	05-18-25
California	State	2897	01-31-26
Colorado	State	CA00044	08-31-24
Florida	NELAP	E87570	06-30-25
Georgia	State	4040	01-29-25
Hawaii	State	Eurofins Sacramento	01-29-25
Illinois	NELAP	200060	03-31-25
Kansas	NELAP	E-10375	10-31-25
Louisiana	NELAP	01944	06-30-25
Louisiana (All)	NELAP	01944	06-30-25
Maine	State	CA00004	04-14-26
Michigan	State	9947	01-29-25
Nevada	State	CA00044	07-31-25
New Hampshire	NELAP	2997	04-19-25
New Jersey	NELAP	CA005	06-30-25
New York	NELAP	11666	04-01-25
Ohio	State	41252	01-29-25
Oregon	NELAP	4040	01-29-25
Texas	NELAP	T104704399-23-17	05-31-25

Accreditation/Certification Summary

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project/Site: CMC

Laboratory: Eurofins Sacramento (Continued)

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
US Fish & Wildlife	US Federal Programs	A22139	04-30-25
USDA	US Federal Programs	P330-18-00239	02-28-26
Utah	NELAP	CA000442023-16	02-28-25
Virginia	NELAP	460278	03-14-25
Washington	State	C581	05-05-25
West Virginia (DW)	State	9930C	01-31-25
Wisconsin	State	998204680	08-31-25
Wyoming	State Program	8TMS-L	01-28-19 *

Laboratory: Eurofins St. Louis

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	20-001	05-06-25
ANAB	Dept. of Defense ELAP	L2305	04-06-25
ANAB	Dept. of Energy	L2305.01	04-08-25
ANAB	ISO/IEC 17025	L2305	04-06-25
Arizona	State	AZ0813	07-28-24
California	Los Angeles County Sanitation Districts	10259	06-30-22 *
California	State	2886	06-30-24 *
Connecticut	State	PH-0241	03-31-25
Florida	NELAP	E87689	06-30-25
llinois	NELAP	200023	11-30-24
lowa	State	373	12-01-24
Kansas	NELAP	E-10236	10-31-24
Kentucky (DW)	State	KY90125	12-31-24
Kentucky (WW)	State	KY90125 (Permit KY0004049)	12-31-24
ouisiana	NELAP	04080	06-30-22 *
_ouisiana (All)	NELAP	04080	06-30-25
Louisiana (DW)	State	LA011	12-31-24
Maryland	State	310	09-30-24
Massachusetts	State	M-MO054	06-30-25
VI - RadChem Recognition	State	9005	06-30-24 *
Missouri	State	780	06-30-25
Vevada	State	MO00054	07-31-24
New Jersey	NELAP	MO002	06-30-25
New Mexico	State	MO00054	10-01-24
New York	NELAP	11616	03-31-25
North Carolina (DW)	State	29700	07-31-24
Oklahoma	NELAP	9997	08-31-24
Oregon	NELAP	4157	09-01-24
Pennsylvania	NELAP	68-00540	02-28-25
South Carolina	State	85002001	06-30-24 *
Texas	NELAP	T104704193	07-31-24
JS Fish & Wildlife	US Federal Programs	058448	07-31-24
USDA	US Federal Programs	P330-17-00028	05-18-26
Utah	NELAP	MO00054	07-31-24
Virginia	NELAP	460230	06-14-25
Washington	State	C592	08-30-24

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

Job ID: 885-7077-1

Authority	Program	Identification Number	Expiration Date
West Virginia DEP	State	381	10-31-24

Accreditation/Certification Summary

Client: Albuquerque Metropolitan Arroyo Flood Control Authority Project/Site: CMC

Laboratory: Eurofins St. Louis (Continued)

Job ID: 885-7077-1

10

11 12 13

Pace Analytical ANALYTICAL REPORT

Eurofins - Albuquerque, NM

Sample Delivery Group: Samples Received: Project Number: Description:

07/02/2024

L1752635

Report To:

Erin Munoz 4901 Hawkins NE Albuquerque, NM 87109

Entire Report Reviewed By:

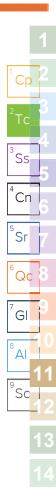
Jordan N Zito Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and exceeded to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 mydata.pacelabs.com

Тс Ss Cn Sr Qc GI AI Sc


ACCOUNT: Eurofins - Albuquerque, NM PROJEPTage 73 of 97

SDG: L1752635

DATE/TIME: 07/09/24 18:05 7/31720524 1 of 14

TABLE OF CONTENTS

Cp: Cover Page		1
Tc: Table of Contents		2
Ss: Sample Summary		3
Cn: Case Narrative		4
Sr: Sample Results		5
RG-NORTH20240626 (885-7077-1)	L1752635-01	5
RG-SOUTH20240627 (885-7077-2)	L1752635-02	6
Qc: Quality Control Summary		7
Wet Chemistry by Method 7199		7
GI: Glossary of Terms		9
Al: Accreditations & Locations		10
Sc: Sample Chain of Custody		11

SAMPLE SUMMARY

			Collected by	Collected date/time	Received date/time		
RG-NORTH20240626 (885-7077-1) L1752635-01			06/26/24 15:05	07/02/24 09	:00		
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
			date/time	date/time			
Wet Chemistry by Method 7199	WG2315989	1	07/09/24 03:03	07/09/24 03:03	SET	Mt. Juliet, TN	
			Collected by	Collected date/time	Received da	te/time	
RG-SOUTH20240627 (885-7077-2) L1752635-02	GW			06/27/24 13:10	07/02/24 09:00		
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
			date/time	date/time			
Wet Chemistry by Method 7199	WG2315989	1	07/09/24 03:14	07/09/24 03:14	SET	Mt. Juliet, TN	

DATE/TIME: 07/09/24 18:05

7/31720524 3 of 14

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jordan N Zito Project Manager

Sample Delivery Group (SDG) Narrative

The following analysis were performed from an unpreserved, insufficiently or inadequately preserved sample.

Lab Sample ID	Project Sample ID	Method
L1752635-01	RG-NORTH20240626 (885-7077-1)	7199
L1752635-02	RG-SOUTH20240627 (885-7077-2)	7199

DATE/TIME: 07/09/24 18:05

RG-NORTH20240626 (885-7077-1)

Collected date/time: 06/26/24 15:05

SAMPLE RESULTS - 01

Wet Chemistry by Method 7199

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Hexavalent Chromium-Low Level	ND		0.000100	1	07/09/2024 03:03	WG2315989

		1
	,	
² Tc		
³ Co		÷
ັSs		5
4	_	
^⁴ Cr	1	6
5		
⁵Sr	'	
6	_	
ຶQເ	2	8
	_	
⁷ Gl		9
	_	
⁸ AI		
		1
9		
Sc		2
	-	
	4	3

RG-<mark>SOUTH20240627 (885-7077-2)</mark>

SAMPLE RESULTS - 02

Collected date/time: 06/27/24 13:10

Wet Chemistry by Method 7199

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Hexavalent Chromium-Low Level	ND		0.000100	1	07/09/2024 03:14	WG2315989

WG2315989

Wet Chemistry by Method 7199

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R4091510-1 07/09/2	(MB) R4091510-1 07/09/24 02:36							
	MB Result	MB Qualifier	MB MDL	MB RDL				
Analyte	mg/l		mg/l	mg/l				
Hexavalent Chromium-Low Level	U		0.0000400	0.000100				

L1753184-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1753184-04 07/09/	24 04:19 • (DUP)) R4091510-5	07/09/24	04:52		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Hexavalent Chromium-Low Level	0.000379	0.000392	1	3.48		20

L1753184-16 Original Sample (OS) • Duplicate (DUP)

OS) L1753184-16 07/09/2	24 07:35 • (DUP)	R4091510-8	07/09/24	07:46		
	Original Result	DUP Result	Dilution	DUP RPD D	OUP Qualifier	DUP RPD Limits
nalyte	mg/l	mg/l		%		%
Hexavalent Chromium-Low Level	ND	ND	1	0.000		20

Laboratory Control Sample (LCS)

(LCS) R4091510-2 07/09/2	24 02:47				
		Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
ļ	Analyte	mg/l	mg/l	%	%	
	Hexavalent Chromium-Low Level	0.00200	0.00206	103	90.0-110	

L1753184-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1753184-01 07/09/24	(OS) L1753184-01 07/09/24 03:25 • (MS) R4091510-3 07/09/24 03:36 • (MSD) R4091510-4 07/09/24 03:47											
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Hexavalent Chromium-Low Level	0.00100	0.000107	0.00108	0.00107	96.9	95.9	1	90.0-110			0.868	20

Тс

Ss

⁴Cn

Ŝr

GI

WG2315989

Wet Chemistry by Method 7199

QUALITY CONTROL SUMMARY

L1753184-14 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1753184-14 07/09/24	(OS) L1753184-14 07/09/24 06:30 • (MS) R4091510-6 07/09/24 07:03 • (MSD) R4091510-7 07/09/24 07:14											
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Hexavalent Chromium-Low Level	0.00100	ND	0.000978	0.000944	97.8	94.4	1	90.0-110			3.47	20

P**77/93:1/2024** 8 of 14

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.	
ND	Not detected at the Reporting Limit (or MDL where applicable).	
RDL	Reported Detection Limit.	
Rec.	Recovery.	
RPD	Relative Percent Difference.	
SDG	Sample Delivery Group.	
U	Not detected at the Reporting Limit (or MDL where applicable).	
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.	
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, result reported has already been corrected for this factor.	
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.	
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.	
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resul reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.	
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.	
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.	
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.	
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.	
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. Th chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of samples from the time of collection until delivery to the laboratory for analysis.	
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section fo each sample will provide the name and method number for the analysis reported.	
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.	
Qualifier	Description	

The remainder of this page intentionally left blank, there are no qualifiers applied to this SDG.

PROJECT age 81 of 97

Ss

Cn

Sr

Qc

GI

ΔΙ

Sc

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
laska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
daho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
_ouisiana	AI30792	Tennessee ¹⁴	2006
ouisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
		1100.4	D000 45 00004
Canada	1461.01	USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

Eurofins Albuquerque

4901 Hawkins NE Albuquerque, NM 87109 Phone: 505-345-3975 Fax: 505-345-4107

Chain of Custody Record

🔅 eurofin

⊨ Environment Testing

G233

Client Information (Sub Contract Lab)	Sampler: Lab PM Muno				м: oz, Eri	in				Carrier 1	racking N	lo(s):		COC No: 885-1125.1	
Client Contact: Shipping/Receiving	Phone: E-Mail: Erin.Munoz@et.eurofinsus.						State of			Page:					
Company:				Letini.	Accred	litations	Required (New M	exico		_	Page 1 of 1	
Pace Analytical Services LLC Address:					NELA	AP - 0	regon							885-7077-1	
12065 Lebanon Road, ,	Due Date Request 7/22/2024	ed:						Anal	ysis Re	aueste	d			Preservatio	n Codes:
City: Mount Juliet	TAT Requested (d	ays):				ε			TT	İT	TT				
State, Zip: TN, 37122	1					Chromium									
Phone:	PO #:					ent Ch									
Email:	WO #;				or No) o)	ium)/ Hexavalent									
Project Name: CMC	Project #:				(Yes or s or No)	H /(un								ners	1,17526
Site:	88500567 SSOW#:				Ve:	hromi								Other:	011000
Sample Identification - Client ID (Lab ID)	Sample Date	Sample Time	Туре	Matrix W=water, S=solid, =waste/oil, Issue, A=Air)	Field Filtered Sam Perform MS/MSD	SUB (Hexavalent Chromi								otal Number of	al Instructions/Note:
	> <	$>\!$	Preservation		XX				1214					X Opec	al mat actions/Note.
RG-North20240626 (885-7077-1)	6/26/24	15:05 Mountain		Water		X								1 See Attached	Instructions
RG-South20240627 (885-7077-2)	6/27/24	13:10 Mountain		Water		x								1 See Attached	Instructions -51
					+			_				_			
AROB/02/WZY					+							+			
RA Screen <0.5 mR/hr:	VOA 2000 P	Applicable eadspace: t/Check:	59 ≅⊻_™ Z												
Note: Since laboratory accreditations are subject to change, Eurofins Environment aboratory does not currently maintain accreditation in the State of Origin listed abo accreditation status should be brought to Eurofins Environment Testing South Cent	tral, LLC attention im	matrix being a mediately. If a	nalyzed, the sample ill requested accred	ethod, analy as must be s itations are	te & aco shipped current	back to to date,	on complia the Eurofin return the	nce upon o is Environr signed Cha	our subcon ment Testin ain of Custo	ract labora g South Ce ody attestin	ories. Th ntral, LLC to said (iis sampli laborato compliano	e shipme ry or oth ce to Eur	ent is forwarded ur her instructions will rofins Environment	der chain-of-custody. If the be provided. Any changes to Testing South Central, LLC.
Possible Hazard Identification					Sar	mple L	Disposal	(A fee l	may be a	ssessed	if sam	ples ar	e retai	ined longer th	an 1 month)
Unconfirmed Deliverable Requested: I, II, III, IV, Other (specify)	Primary Delivera	ble Rank: 2			L	Re	turn To C	lient		Disposal	By Lab	[chive For	Months
Empty Kit Relinguished by:		Date:		T	Time:				quirenne	COMPLET	nod of Sh	ipment:			
Relinquished by	Date/Time:	74 I	ZET Com	pany		Receiv	ed by:	0	1.		ID	ate/Time	1.	11 10 10	Company
Relinquished by	Date/Time:	01 1	SO Com	pany	_	Receive		Sam	-68		D	n/or ate/Time:	por	4 090	Company
Relinguished by:															1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -

ICOC No:

885-1125

Containers

Count	Container Type
2	Other Client Container - preserved

Preservative None

Subcontract Method Instructions

Sample IDs	Method	Method Description	Method Comments
1, 2	SUBCONTRACT	SUB (Hexavalent Chromium)/	CR6
		Hexavalent Chromium	

FedEx Ship Manager - Print Your Label(s)

7/1/24, 1:57 PM

Page 85 of 97

Select the 'Print' button to print 1 copy of each label. The Return Shipment instructions, which provide your recipient with information on the returns process, will be printed with the label(s). After printing, select your next step by clicking one of the displayed buttons. - die

Note: To review or print individual labels, select the Label button under each label image above.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery,misdelivery,or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental.consequential or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss. Maximum for items of extraordinary value is \$500, e.g. jewelty, precious metals, negotiable instruments and other fiems listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

1752635

https://www.fedex.com/shipping/returnShipAction.handle?method=doContinue

7/31/2024

Return Shipment Instructions

L1752635

3/3

Return Shipment Instructions

1. Place the shipping label on the container's most visible side away from seams.

2. Ship your package one of three ways:

- Use your regular scheduled pickup.
- Drop off at FedEx, Find your closest location at fedex.com/locate or by calling 1.800.GoFedEx 1.800.463.3339
 Schedule a pickup. No account number required but label information may be needed. Go to fedex.com/returnpickup for FedEx Ground labels with "G" or "PRP" or call 1.800.GoFedEx 1.800.463.3339 and say:
 "Return Manager" or "PRP" for FedEx Ground labels with "G" or "PRP"
 o "Express Return" for FedEx Express labels with "E" or "Billable Stamp"

Prepare Your Package With Care.

- Use an appropriate container, cushioning materials and at least three strips of packing tape.
- If reusing packaging, remove or black out old shipping labels including their barcode(s).

Special Instructions from the merchant:

7/31/2024

https://www.fedex.com/shipping/returnShipAction.handle?method=doContinue

Client: AMA FCA Mailing Address:	Turn-Around Time: Standard Rush	HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com
	Project #:	4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107
Phone #:		Analysis Request
	Project Manager: Patrick Chaver	TMB's (8021) / DRO / MRO) 8082 PCB's 8270SIMS 4.1)))))))))))))))))))
NELAC Other	Sampler: 100000 On Ice: Pres INo # of Coolers: 2 109,	MTBE / TMB 15D(GRO / DR esticides/8082 lethod 504.1) y 8310 or 8270 3 Metals 3 Metals 3 Metals 3 Metals 3 Metals 3 Metals 0A) (OA) iemi-VOA) iemi-VOA) iemi-VOA) iemi-VOA)
	# of Coolers: 2 303 ;Cooler Temp(including CF): 103 ; $101 = 10.4$ (°C)ContainerPreservativeType and #Type	BTEX / MTBE / TMB's (8021) TPH:8015D(GRO / DRO / MRO) 8081 Pesticides/8082 PCB's EDB (Method 504.1) PAHs by 8310 or 8270SIMS RCRA 8 Metals CI, F, Br, NO ₃ , NO ₂ , PO ₄ , SO ₄ 8260 (VOA) 8270 (Semi-VOA) Total Coliform (Present/Absent) Cotal Coliform (Present/Absent)
Date Time Matrix Sample Name		
27/27/24 1310 RG-South 2024062		
6/27/24 1150 EB-20240627	z Bottly parious 3	
Date. Time. Relinquished by: 27/34 W37 Date. Time. Relinquished by:	Received by Vils: Date Time DO 6/27/29/14:37 Received by Via. Date Time	Remarks: SEE attached UST.

14 13 12

Collaborative Monitoring Cooperative - Analyses List Attach to Chain of Custody

Please refer to attached NPDES Permit No. NMR04A00 Appendix F. Methods and minimum quantification levels (MQL's) will be those approved under 40 CFR 136 and specified in the attached permit

COMPANY ADDRESS OF A DESCRIPTION	2000	A Reserved	COMPANY OF	-
Hardness (Ca + Mg)	NA	Total	200.7	2.4
Lead	7439-92-1	Dissolved	200.8	0.09
Copper	7440-50-8	Dissolved	200.8	1.06
Ammonia + organic nitrogen	7664-41-7	Total	350.1	31.32
Total Kjehldal Nitrogen	17778-88-0	Total	351.2	58.78
Nitrate + Nitrite	14797-55-8	Total	353.2	10.17
Polychlorinated biphenyls (PCBs)	1336-36-3	Total	1668	0.014
Tetrahydrofuran (THF)	109-99-9	Total	624.1	7.9
bis(2-Ethylhexyl)phthalate	117-81-7	Total	625.1	0.2
Dibenzofuran	132-64-9	Total	625.1	0.2
Indeno(1,2,3-cd)pyrene	193-39-5	Total	610	0.2
Benzo(b)fluoranthene	205-99-2	Total	610	0.1
Benzo(k)fluoranthene	207-08-9	Total	610	0.1
Chrysene	218-01-9	Total	610	0.2
Benzo(a)pyrene	50-32-8	Total	610	0.3
Dibenzo(a,h)anthracene	53-70-3	Total	610	0.3
Benzo(a)anthracene	56-55-3	Total	610	0.2
Dieldrin	60-57-1	Total	625.1	0.1
Pentachlorophenol	87-86-5	Total	604	0.2
Benzidine	92-87-5	Total	604	0.1
Chemical Oxygen Demand	E1641638 ²	Total	HACH	5100
Gross alpha (adjusted)	NA	Total	Method 900	0.1 pCi/L
Total Dissolved Solids	E1642222 ²	Total	SM 2540C	60.4
Total Suspended Solids	NA	Total	SM 2540D	3450
Biological Oxygen Demand	N/A	Total	Standard Methods	930
Oil and Grease		Total	1664A	5000
Ecoli ENUMERATION			SM 9223B	
pH			SM 4500	
Phosphorus		Dissolved	365.1	100
Phosphorus		Total	365.1	100
Chromium IV		Total	3500Cr C-2011	100
Per- and polyfluorinated alkyl substances (PFAS)			537.1	-

\\ss6atq\DataS\Projects\NM15.0156_SSCAFCA_Stormwater\Docs\Stormwater Sampling\2024_Parameter list_CMC.doc

3/11/2024

Appendix F - Minimum Quantification Levels (MQL's)

The following Minimum Quantification Levels (MQL's) are to be used for reporting pollutant data for NPDES permit applications and/or compliance reporting.

••	- Porting.							
POLLUTANTS	QL PC /I	OLLUTANTS	MQL µg/l					
	, RADIOACTIVITY, CY	ANIDE and CHLORINE						
Aluminum Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Mercury (*)	Ni Se Sil Th Ur Va Zia Cy Cy Cy To	blybdenum ckel lenium ver alllium anium nadium nc anide anide anide, weak acid dissociable tal Residual Chlorine	10 0.5 5 0.5 0.5 0.1 50 20 10 10 33					
0.005 DIOXIN								
2,3,7,8-TCDD	0001							
	VOLATILE COM	POUNDS						
Acrolein Acrylonitrile Benzene Bromoform Carbon Tetrachloride Chlorobenzene Clorodibromomethane Chloroform Dichlorobromomethane 1,2-Dichloroethane 1,2-Dichloroethylene 1,2-Dichloropropane	Ett Me 1,1 Te To 1,2 1,1 Tri	-Dichloropropylene hylbenzene ethyl Bromide ethylene Chloride ,2,2-Tetrachloroethane trachloroethylene luene -trans-Dichloroethylene ,2-Trichloroethane chloroethylene hyl Chloride	10 10 50 20 10 10 10 10 10 10 10					
1,2-Dichloropropane	ACID COMPO	INDS						
2 (1)			50					
2-Chlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 4,6-Dinitro-o-Cresol	Per Pho	-Dinitrophenol ntachlorophenol enol ,6-Trichlorophenol	5 10 10					
2-Chlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol	Per Pho	-Dinitrophenol ntachlorophenol enol						

POLLUTANTS	MQL µg/l	POLLUTANTS	MQL µg/l
	1	BASE/NEUTRAL	
Acenaphthene	10	Dimethyl Phthalate	10
Anthracene	10	Di-n-Butyl Phthalate	10
Benzidine	50	2,4-Dinitrotoluene	10
Benzo(a)anthracene	5	1,2-Diphenylhydrazine	20
Benzo(a)pyrene	5	Fluoranthene	10
3,4-Benzofluoranthene	10	Fluorene	10
Benzo(k)fluoranthene	5	Hexachlorobenzene	5
Bis(2-chloroethyl)Ether	10	Hexachlorobutadiene	10
Bis(2-chloroisopropyl)Ether	10	Hexachlorocyclopentadiene	10
Bis(2-ethylhexyl)Phthalate	10	Hexachloroethane	20
Butyl Benzyl Phthalate	10	Indeno(1,2,3-cd)Pyrene	5
2-Chloronapthalene	10	Isophorone	10
Chrysene	5	Nitrobenzene	10
Dibenzo(a,h)anthracene	5	n-Nitrosodimethylamine	50
1,2-Dichlorobenzene	10	n-Nitrosodi-n-Propylamine	20
1,3-Dichlorobenzene	10	n-Nitrosodiphenylamine	20
1,4-Dichlorobenzene	10	Pyrene	10
3,3'-Dichlorobenzidine	5	1,2,4-Trichlorobenzene	10
Diethyl Phthalate	10		
	PES	TICIDES AND PCBS	
Aldrin	0.01	Beta-Endosulfan	0.02
Alpha-BHC	0.05	Endosulfan sulfate	0.02
Beta-BHC	0.05	Endrin	0.02
Gamma-BHC	0.05	Endrin Aldehyde	0.1
Chlordane	0.2	Heptachlor	0.01
4,4'-DDT and derivatives	0.02	Heptachlor Epoxide	0.01
Dieldrin	0.02	PCBs **	0.2
Alpha-Endosulfan	0.01	Toxaphene	0.3
53			

(MQL's Revised November 1, 2007)

(*) Default MQL for Mercury is 0.005 unless Part I of your permit requires the more sensitive Method 1631 (Oxidation / Purge and Trap / Cold vapor Atomic Fluorescence Spectrometry), then the MQL shall be 0.0005.

(**) EPA Method 1668 should be utilized when PCB water column monitoring is conducted to determine compliance with permit requirements. Either the Arochlor test (EPA Method 8082) or USGS test method (8093) may be utilized for purposes of sediment sampling as part of a screening program, but must use EPA Method 1668 (latest revision) for confirmation and determination of specific PCB levels at that location.

Eurofins Albuquerque

4901 Hawkins NE Albuquerque, NM 87109 Phone: 505-345-3975 Fax: 505-345-4107

Chain of Custody Record

🔅 eurofins

Environment Testing

Client Information (Sub Contract Lab)	Sampler			Lab PM Munoz, Erin							-	Carrier Tracking No(s)							C No. 5-1129.1				Ĩ	
Client Contact Shipping/Receiving	Phone:	E-Ma Erin		ail n.Munoz@et.eurofinsus.com							State of Origin New Mexico						Pag	_		100	1.00			
Company. TestAmerica Laboratories, Inc.					Ac	credita	ations		red (S	ee note	B):					-		-	Job)#:				
Address: 13715 Rider Trail North,	Due Date Request 7/24/2024	ed:			T			- gei		And	alveid	Bar		uested						5-7077-1 eservation	_	5:		-
City Earth City	TAT Requested (d	ays):			t	П							lues	leu	T	T		T	Ľ					
State, Zip:	1																							
MO, 63045 Phone:	PO#:	·····																						
314-298-8566(Tel) 314-298-8757(Fax) Email	WO#	-			- î		t List																	0
					s or	or No)	Targe											2						
Project Name CMC	Project #: 88500567				e (Ye	P\$ OT	dard		E									containe						
Site:	SSOW#:				amp	λ) Q	n Star		raniu											ner:				3
Sample Identification - Client ID (Lab ID)	Sample Date	Sample Time	Type (w	atrix water, solid, vaste/oil,	Field Filtered S	Perform MS/MSD (Yes	900.0/Evaporation Standard Target List	GrAIAdjUnc_Calc	200.8/200_2%P Uranium									Total Number of						
	>	> <	Preservation		X	X	0	0	2									×	1	Speci		ruction	s/Note:	
RG-North20240626 (885-7077-1)	6/26/24	15:05 Mountain	v	Vater	Γ		x	x	x									1	1					
RG-South20240627 (885-7077-2)	6/27/24	13:10 Mountain	v	Vater	T		x	x	x			-				1	\top	1	1					-
					T																	- 82		-
					T					+	\top	-			1	-	+		-		-			-
											1				1		+							-
					T							1			1									-
					T						\top	1			1		+				6			
					\square					1	+	1			+	+	+							-
						H						\top			+	-	+		1		_			-
Note: Since laboratory accreditations are subject to change, Eurofins Environmen laboratory does not currently maintain accreditation in the State of Origin listed ab accreditation status should be brought to Eurofins Environment Testing South Ce						pped b rrent to	oack to o date	o the E , retur	Eurofin In the s	s Envir signed (onment Chain o	Testing f Custo	g Sout dy atte	h Centra sting to	said	C labor compli	atory o ance to	or othe Euro	er instr ofins E	ructions will nvironment	be provi Testing	ded Any South Cer		
Possible Hazard Identification Unconfirmed						Sam			osal To C		e may	be a	sses	sed if sal By	san	nples	are r			onger tha	an 1 m			
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Delivera	able Rank: 2	2			Spec					Requi	remer	nts:	sal By	Lab			Arc	hive	For	are an a bitter	Month	S	\neg
Empty Kit Relinguished by:		Date:			Tir	ne:			_	1	_		-	Method	of St	hipmen	t							-
Relinquished the Manter	Date/Time	24 14	425 Comp	any	-	F	Receiv	ved by	-)					C	Date/Tir	ne:	-			0	Company		\neg
Relinquished by:	Date/Time:		Comp	any	-	1	4	ved by	P	m	ot	to	-		C	Date/Tir	ne: A	0	201	24090		Company	-	\neg
Relinquished by:	Date/Time		Comp	any		-	Receiv	ved by		10	n		-	_	0	ate/Tir	U U	2	202	4 VY V		Company		\neg
Custody Seals Intact: Custody Seal No∴ ∆ Yes ∆ No				1		-	Cooler	r Temp	peratur	re(s) °C	and Ot	her Re	marks						-					-
				0.51									_		_		_		-		· · ·	/er: 04/02	2/2024	
								la	2	12				4	9	00			0	5 U				

7/31/2024

Eurofins Albuquerque

4901 Hawkins NE

Chain of Custody Record

💸 eurofins Environment Testing

Albuquerque NM 87109 Phone: 505-345-3975 Fax: 505-345-4107		Chain	of Custod	y Re	eco	ord						d (j					4	seurofins		nent Testin
Client Information (Sub Contract Lab)	Sampler [.]			Lab PM Muno		n						Carrie	Tracki	ng No(s	s):			COC No: 885-1126.1		
Client Contact: Shipping/Receiving	Phone:	Phone: E-N				ail:							of Origin					Page:		
Company:		Len Len				n.Munoz@et.eurofinsus.com Accreditations Required (See note);							Mexic	0				Page 1 of 1 Job #:		
Eurofins Environment Testing Northern Ca				1	NELA	ΡO	regoi	n	- 11010)									885-7077 1		
Address: 880 Riverside Parkway	Due Date Request 7/25/2024	ted							Ana	lysis	Rec	quest	ed				_	Preservation Co	des	1949 - 1999 1999
city: West Sacramento	TAT Requested (d	ays):										ĪT								
State, Zip: CA, 95605				- and - she													Ale and the second s			
Phone: 916-373-5600(Tel) 916-372-1059(Fax)	PO #:					t.														
Email:	WO #:					1633 Method List	(602										an a			
Project Name: CMC	Project #:				Yes or or No)	Meth	1668A/HRMS_Sep_P Full List (209)										ners			
Site:	88500567 SSOW#:				Yes	1633	E I										ntai	20.		
	33077#.				with the second se	EPA	d_d										ofcon	Other [.]		
			Sample Mat	rix	SIM	1633/1633_SPE EPA	s's										Sec. 1			
			Type (w=w	ater,	rm N	633	HRM										Number			
Sample Identification Client ID (Lab ID)	Comple Date	Sample	(C=comp, O=was	e/oil,	Perform	1/289	68A/									41.004	Total			
	Sample Date	Time	G=grab) BT=Tissue Preservation Co			4	-		1.4.1	1		Inderson S. Str.		1000	. In control		Ĕ.	Special II	nstructions/	Note
RG-North20240626 (885-7077 1)	6/26/24	15:05	Wa		Ŷ	Х	x	<u>la sedi (</u>		<u>. 1</u>	<u> </u>	lana di Sa	and here		a stranger		\mathbf{A}	J and MDL		
RG-South20240627 (885-7077-2)	6/27/24	Mountain 13.10 Mountain	Wa	ter		х	x		+	+						Concess (Concess)	4	J and MDL		
EB-20240627 (885-7077-3)	6/27/24	11 50 Mountain	Wa	ier	1	х			+							and kongry	2			
		Mountain								+			+				unta		•••••••	0000
										1			_				-		-	
									+	1						dil incore	<u></u>			
									-					-			Albanan ar			
									-	+			_							
				+						-			_			and house				
Note: Since laboratory accreditations are subject to change, Eurofins Enviro aboratory does not currently maintain accreditation in the State of Origin lis accreditation status should be brought to Eurofins Environment Testing Sou	onment Testing South Centr ted above for analysis/lests ath Central, LLC attention in	al, LLC places /matrix being a imediately. If a	the ownership of metho inalyzed, the samples m all requested accreditation	d, analyte ust be sh ons are c	e & acc hipped l	credita back to to date	ition co o the E e, return	ompliance Eurofins I In the sig	e upon Enviror ned Cl	n our su nment '	abcontra Testing Custor	act labo South (ly attest	ratories Central, ing to s	. This : LLC la aid corr	sample borator	shipm y or oti a to Eu	ent is her in rofins	forwarded under c Istructions will be prosented to the structions will be prosented by the structure of the	hain-of-custody, ovided. Any ch	. If the langes to
Possible Hazard Identification								100 m		may	be as	sess	ed if s	ampl	es are	e reta	inec	d longer than 1		
Unconfirmed						Re	eturn	To Clie	ent	1		isposa	l By L	ab .	Ľ	A	rchiv	ve For	Months	
Deliverable Requested: I II III IV Other (specify)	Primary Deliver	able Rank: 2	2		Spe	icial I	Instru	ctions/	QC R	Requir	emen	ts.			0.000					
Empty Kit Relinquished by:		Date:		Т	ime:					\sim		M	ethod o	f Shipa	nent:					
Relinquished	Date/Time:	21 14	05 Company	/		Recei	ved by	1	A.)			(Date	Turney.	2	n	PAN	Company	Par
Relinquist by:	Date/Time:	of rt	Company	'		Receiv	Vector	H	<u> </u>	+				Date.	/Time:	Ur all	/	470	Company	
Relinquished by:	Date/Time:		Company	1		Receiv	ved by	Đ						Date,	/Time:				Company	
Custody Seals Intact: Custody Seal No.		a /				Coole	r Temo	perature(s) °C a	and Off	ier Ren	narks:		<u> </u>		1				
Yes A No	24	1							.,				20	3	5	, . C	4	2		
									<u> </u>										Ver: 04/02/2	2024

Page 92 of 97

7/31/2024

Environment Testing	Sacramento Sample Receiving Notes (SSRN)
doL	ng # <u>HH (66373090</u> PO)FO / SAT / 2-Day / Ground / UPS / CDO / Courier TOnTrac / Goldstreak / USPS / Other erature & corrected Temperature & other observations.
Therm ID Corr Factor (+/-)°C Ice Wet Gel Other Cooler Custody Seal: Cooler ID [.] Temp Observed 3.4 °C Corrected 3.4 °C From Temp Blank D Sample D	Notes
Opening/Processing The Shipment Yes No NA Cooler compromised/tampered with? □ □ □ Cooler Temperature is acceptable? □ □ □ Frozen samples show signs of thaw? □ □ □ Initials. □ □ □ □ Unpacking/Labeling The Samples Yes No NA Containers are not broken or leaking? □ □ □	
Samples compromised/tampered with? □ □ COC is complete w/o discrepancies □ □ Sample custody seal? □ □ Sample containers have legible labels? □ □ Sample date/times are provided? □ □ Appropriate containers are used? □ □ Sample bottles are completely filled? □ □ Sample preservatives verified? □ □ Is the Field Sampler's name on COC? □ □	Trizma Lot #(s) 000033340288 Ammonium Acetate Lot #(s)
Samples w/o discrepancies?	Login Completion Yes No NA Receipt Temperature on COC? Image: Complete the complexity of the co

INTACORPICORPIQAIQA_FACILITIESISACRAMENTO-QAIDOCUMENT-MANAGEMENTIFORMSIQA-812 SAMPLE RECEIVING NOTES.DOC Page 900197 3 33B

QA-812 MBB 2023-08-07

7/31/2024

·

Client: Albuquerque Metropolitan Arroyo Flood Control Authority

Login Number: 7077 List Number: 1 Creator: Cason, Cheyenne

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 885-7077-1

List Source: Eurofins Albuquerque

Client: Albuquerque Metropolitan Arroyo Flood Control Authority

Login Number: 7077 List Number: 2 Creator: Torrez, Lisandra

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	True	

Job Number: 885-7077-1

List Source: Eurofins Houston

List Creation: 07/02/24 10:56 AM

<6mm (1/4").

Client: Albuquerque Metropolitan Arroyo Flood Control Authority

Login Number: 7077 List Number: 4 Creator: Simmons, Jason C

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	Seal
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	3.4c
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

14

Job Number: 885-7077-1

List Source: Eurofins Sacramento

List Creation: 07/02/24 12:15 PM

Client: Albuquerque Metropolitan Arroyo Flood Control Authority

Login Number: 7077 List Number: 3 Creator: Pinette, Meadow L

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 885-7077-1

List Source: Eurofins St. Louis

List Creation: 07/02/24 01:31 PM

ATTACHMENT 2

FY 2024 DRY SEASON COMPLETED DATA VERIFICATION AND VALIDATION (V&V) FORMS Attachment 1.1 Water Quality Sample Data Verification and Validation Worksheet

Study Name: <u>Compliance Monitoring Cooperative (CMC)</u> Year: <u>FY 2024 (December 2023 – Dry Season Sample)</u> Project Coordinator: <u>For Data Review and Reporting – SJG, BHI</u> V&V Reviewer: <u>SJG</u> Data covered by this worksheet: <u>Alameda – 12/13/2023– E. coli Only Sample</u> Version of Verification/Validation Procedures: QAPP –AMAFCA SOP #5 (7/2022)

Step 1: Verify Field Data

A. Are all Field Data forms present and complete? Xes No

If yes, proceed; if no, attempt to locate missing forms, then indicate any remaining missing forms and action taken.

Missing Field Data Forms	Action Taken

Total number of occurrences: 0

B. Are station name and ID, and sampling date and time on forms consistent with database? \boxtimes Yes \square No If yes, proceed; if no, indicate errors identified, correct errors in database and re-verify.

Station and Parameter	Action Taken	Re-verified?

Total number of occurrences: 0

C. Are field data on forms consistent with database? \square Yes \square No

If yes, proceed; if no, indicate errors identified, correct errors in database and re-verify.

Station	Sampling Date	Parameter(s) Corrected	Re-verified?

Total number of occurrences: 0

D. Are RIDs correct and associated with the correct analytical suite, media subdivision (e.g. surface water, municipal waste, etc.) and activity type (e.g. Field observation, Routine sample, QA sample etc.)?

🛛 Yes 🗌 No

If yes, proceed; if no, indicate errors identified, correct errors in database and re-verify

Station/RID	Sampling Date	RID Corrected	Re-verified?

Total number of occurrences: 0

Step 1 Completed Initials: SJG Date: 2/6/2024

Step 2: Verify Data Deliverables

A. Have all data in question been delivered? Xes ON

If yes, proceed; if no, indicate RIDs with missing data (samples or blanks) or attach report with applicable RIDs highlighted. Contact data source and indicate action taken. Complete this step upon receipt of all missing data.

RID	Submittal Date	Missing Data/Parameters	Date of Initial Verification	Date Missing Data Were Received

Total number of occurrences: 0

B. Do all of the analytical suites have the correct number and type of analytes. 🛛 Yes 🗌 No

If yes, proceed; if no, indicate RIDs with missing or incorrect analyte(s) or attach report with applicable RIDs highlighted. Contact data source and indicate action taken.

RID	Submittal Date	Missing or Incorrect Parameters	Action Taken	Re-verified?

Step 2 Completed Initials: SJG Date: 2/6/2024

Step 3: Verify Flow Data

*Note – Not Applicable – no flow data provided with CMC sample collection

A._Identify incorrect or missing data on the flow calculation spreadsheet and correct errors.

Station	Sampling Date	Flow data missing or incorrect?

Total number of occurrences: 0

B. Identify incorrect or missing discharge measurements, correct errors in database and re-verify.

Station	Sampling Date	Flow data missing or incorrect?	Re-verified?

Total number of occurrences: 0	<u>Not Applicable</u> Step 3 Completed	Initials: SJG	Date: 2/6/2024
Step 4: Verify Analytical Results for Missing Information or Questionable Results			

Were any results with missing/questionable information identified? \Box Yes \Box No

If no, proceed; if yes, indicate results with missing information or questionable results or attach report. Contact data source and indicate action taken. Complete this step upon receipt of missing information or clarification of questionable results (clarify questionable results only, DO NOT change results without written approval (from lab or QA officer) and associated documentation).

RID	Sample Date	Missing or Questionable Information/Results	Action Taken

Total number of occurrences: 0			
	Step 4 Completed	Initials: <u>SJG</u>	Date: 2/6/2024

Step 5: Validate Blanks Results

Were any analytes of concern detected in blank samples? \Box Yes \boxtimes No

If no, proceed; if yes, list results that need to have validation codes applied in the database save these results as an excel file and forward to QA officer or Program Manager, with a request to add appropriate validation codes to database. Complete this step after verifying that validation codes have been added to database correctly.

RID	Sample Date	Parameter	[Blank]	[Sample]	Validatio n Code/Fla g Applied	Code/Flag verified in database? *

*See validation procedures to determine which associated data need to be flagged and include on Validation Codes Form.

Total number of occurrences: 0

Step 5 Completed	Initials: <u>SJG</u>	Date: 2/6/2024

Step 6: Validate Holding Times Violations

Were any samples submitted that did not meet specified holding times? Yes No

If no, proceed; if yes, list results that need to have validation codes applied in the database save these results as an excel file and forward to QA officer or Program Manager with a request to add appropriate validation codes to database. Complete this step after verifying that validation codes/flags have been added to database.

RID	Sample Date	Parameter	[Blank]	[Sample]	Validation Code/Flag Applied	Code/Flag verified in database to ALL associated data?*

*See validation procedures to determine which associated data need to be flagged.

Total number of occurrences: 0

\boxtimes	Step	6 Completed	Initials: SJG	Date: 2/6/2024
-------------	------	-------------	---------------	----------------

Step 7: Validate Replicate/Duplicate Results (if applicable)

Were any replicate/duplicate pairs submitted outside of the established control limit of 20%? \Box Yes \boxtimes No

If no, proceed; if yes, list results that need to have validation codes applied in the database save these results as an excel file and forward to QA officer or Program Manager with a request to add appropriate validation codes to database. Complete this step after verifying that validation codes/flags have been added to database.

RID Pairs		Replicate or Duplicate?	Sample Date	Parameter	RPD	Validation Code/Flag Applied	Code/Flag verified in database applied?*	

N/A – no duplicate/replicate results

Total number of occurrences: 0

Step 7 Completed Initials: SJG Date: 2/6/2024

After all of the above steps have been completed, save and print the worksheet, attach all applicable supplemental information and sign below.

I acknowledge that the data verification and validation process has been completed for the data identified above in accordance with the procedures described in the CMC QAPP, SOP #2

Sach County

2/6/24

Data Verifier/Validator Signature

Date

COMPLETION OF DATA VERIFICATION AND VALIDATION PROCESS

Once the data verification and validation process has been completed for the <u>entire study</u> (note: if the worksheet is for a subset of the data from a study, be sure ALL the data for the entire study is included before final completion of the data verification and validation process), notify the NMSQUID administrator that the process is complete and request that "V V in STORET" be added to the project title.

Once all data have been verified and validated for a study provide <u>copies</u> of ALL *Data Verification and Validation Worksheets* and attachments associated with the study to the Quality Assurance Officer and retain <u>originals</u> in the project binder.

Attachment 1.2 SWQB Validation Codes

When deficiencies are identified through the data verification and validation process, AMAFCA documents or "flags" the deficiencies by assigning validation codes. All data collected from the last compliant QC sample and up to the next compliant QC sample are assigned validation codes. The validation code alerts the data user that the results are outside QA control limits and may require re-sampling or a separate, qualitative analysis based on professional judgment.

Validation Code	Definition	WQX Equivalent
A1	Sample not collected according to SOP	-
B1	Chemical was detected in the field blank at a concentration less than 5% of the sample concentration.	
BN	Blanks NOT collected during sampling run	
BU	Detection in blank. Analyte was not detected in this sample above the method's sample detection limit.	BU
RB1	Chemical was detected in the field blank at a concentration greater than or equal to 5% of the sample concentration. Results for this sample are rejected because they may be the result of contamination; the results may not be reported or used for regulatory compliance purposes.	В
R1	Rejected due to incorrect sample preservation	R
R2	Rejected due to equipment failure in the field	R
R3	Rejected based on best professional judgment	R
D1	Spike recovery not within method acceptance limits	
F1	Sample filter time exceeded	
J1	Estimated: the analyte was positively identified and the associated value is an approximate concentration of the analyte in the sample	J
K1	Holding time violation	Н
Ea	Estimated-Incubation temperature between 35.5 and 38.0° Celsius	
Er	Rejected-Incubation temperature < 34.5 or >38.0° Celsius	
PD1	Percent difference between duplicate samples excessive	
S1	Per SLD, uncertainties (sigmas) are expressed as one standard deviation, i.e. one standard error. Small negative or positive values that are less than two standard deviations should be interpreted as "less than the detection limit."	
S2	Data are suspect but deemed usable based on best professional judgment; documentation of justification is required and should be included in the Data Verification and Validation Packet and reported with results	
Z1	Macroinvertebrate data did not meet QC criteria specified in Section 2.5 of QAPP	
H1	Habitat data did not meet QC criteria specified in Section 2.5 of QAPP	

Attachment 1.1 Water Quality Sample Data Verification and Validation Worksheet

Study Name: <u>Compliance Monitoring Cooperative (CMC)</u> Year: <u>FY 2024 (December 2023 – Dry Season Sample)</u> Project Coordinator: <u>For Data Review and Reporting – SJG, BHI</u> V&V Reviewer: <u>SJG</u> Data covered by this worksheet: <u>Rio Grande North – 12/13/2023</u> Version of Verification/Validation Procedures: <u>QAPP – AMAFCA SOP #5 (7/2022</u>)

Step 1: Verify Field Data

A. Are all Field Data forms present and complete? Xes No

If yes, proceed; if no, attempt to locate missing forms, then indicate any remaining missing forms and action taken.

Missing Field Data Forms	Action Taken

Total number of occurrences: 0

B. Are station name and ID, and sampling date and time on forms consistent with database? \boxtimes Yes \square No If yes, proceed; if no, indicate errors identified, correct errors in database and re-verify.

Station and Parameter	Action Taken	Re-verified?

Total number of occurrences: 0

C. Are field data on forms consistent with database? \square Yes \square No

If yes, proceed; if no, indicate errors identified, correct errors in database and re-verify.

Station	Sampling Date	Parameter(s) Corrected	Re-verified?

Total number of occurrences: 0

D. Are RIDs correct and associated with the correct analytical suite, media subdivision (e.g. surface water, municipal waste, etc.) and activity type (e.g. Field observation, Routine sample, QA sample etc.)?

Yes No

If yes, proceed; if no, indicate errors identified, correct errors in database and re-verify

Station/RID	Sampling Date	RID Corrected	Re-verified?		

Total number of occurrences: 0

Step 1 Completed Initials: SJG Date: 12/12/2024

Step 2: Verify Data Deliverables

Α.	Have all da	ta in o	question	been	delivered?	\boxtimes	Yes		No
----	-------------	---------	----------	------	------------	-------------	-----	--	----

If yes, proceed; if no, indicate RIDs with missing data (samples or blanks) or attach report with applicable RIDs highlighted. Contact data source and indicate action taken. Complete this step upon receipt of all missing data.

RID	Submittal Date	Missing Data/Parameters	Date of Initial Verification	Date Missing Data Were Received

Total number of occurrences: 0

Β.	Do all of the analy	tical suites have the correct number and type of analytes.	🗌 Yes	🖾 No
----	---------------------	--	-------	------

If yes, proceed; if no, indicate RIDs with missing or incorrect analyte(s) or attach report with applicable RIDs highlighted. Contact data source and indicate action taken.

RID	Submittal Date	Missing or Incorrect Parameters	Action Taken	Re-verified?
	<u>.</u>			

Total number of occurrences: 0

Step 2 Completed Initials: SJG Date: 2/12/2024

Step 3: Verify Flow Data

*Note – Not Applicable – no flow data provided with CMC sample collection A._Identify incorrect or missing data on the flow calculation spreadsheet and correct errors.

Station	Sampling Date	Flow data missing or incorrect?

Total number of occurrences: 0

B. Identify incorrect or missing discharge measurements, correct errors in database and re-verify.

Station	Sampling Date	Flow data missing or incorrect?	Re-verified?	

Total number of occurrences: 0

Not Applicable Step 3 Completed Initials: SJG Date: 2/12/2024

Step 4: Verify Analytical Results for Missing Information or Questionable Results

Were any results with missing/questionable information identified?

If no, proceed; if yes, indicate results with missing information or questionable results or attach report. Contact data source and indicate action taken. Complete this step upon receipt of missing information or clarification of questionable results (clarify questionable results only, DO NOT change results without written approval (from lab or QA officer) and associated documentation).

RID	Sample Date	Missing or Questionable Information/Results	Action Taken
Rio Grande North	<u>12/13/2023</u>	Lab report lists two Total Phosphorous	BHI emailed AMAFCA on 2/7/24 and added note to
1 tortin		results and the dissolved	the lab report.

				(-						
			and total are the reporting		n						
Eurofin	s lab report nu	mber 2312898		y.							
	ber of occurr										
		—					\boxtimes s	Step 4 Comp	leted	Initials: <u>SJG</u>	Date: 2/12/2024
	alidate Blanks analytes of cor		l in blank san	nples?	Yes 🗵	No					
										in excel file and	
	e been added			ppropriate \	alidation	codes to (database. Co	omplete this s	step af	ter verifying that	t validation
COUES Hav	e been audeu		Shectry.								
							Validatio	Code/Flag			
RIE) Sar	nple Date	Param	eter	[Blank	[Sample	n	verified in			
		hpie Date	i alam]]	Code/Fla	database?			
							g Applied	^	_		
									_		
*See valida	ation procedure	es to determin	e which asso	ciated data	need to	be flagged	and include	on Validation	n Code	es Form.	
	•					00					
Total num	ber of occurr	ences: <u>0</u>									
								Ston 5 Com	nlotod	Initials: SIG	Date: 2/12/2024
							· L		pieleu	initiais . <u>556</u>	Date. <u>2/12/2024</u>
Step 6: Va	alidate Holding	g Times Viola	tions								
Were any	samples subm	itted that did n	ot meet spec	ified holding	g times?	🗌 Yes	🖂 No				
16	and from list			-l'det'en ee					4		formuland to OA
										n excel file and er verifying that	
	s have been a			propriate v	andation				top an	er vernying that	validation
	Sample				Valid		ode/Flag ver				
RID	Date	Parameter	[Blank]	[Sample]	Code	0	database to				
		+			Арр	ileu a	ssociated da	ila (
L	- I	I	I	I ———	1						

*See validation procedures to determine which associated data need to be flagged. *Note – Lab reports lists pH with hold time flag. Database uses field data reported pH, so this is hold time is not applicable.

The BOD has a hold time flag. The Rio Grande North sample was held until the CMC was sure the monitoring event was a qualifying storm event. This led to the hold time flag for BOD.

Total number of occurrences: 0

Step 6 Completed Initials: SJG Date: 2/12/2024

Step 7: Validate Replicate/Duplicate Results (if applicable)

Were any replicate/duplicate pairs submitted outside of the established control limit of 20%?

☐ Yes ⊠ No

If no, proceed; if yes, list results that need to have validation codes applied in the database save these results as an excel file and forward to QA officer or Program Manager with a request to add appropriate validation codes to database. Complete this step after verifying that validation codes/flags have been added to database.

RID Pairs	Replicate or Duplicate?	Sample Date	Parameter	RPD	Validation Code/Flag Applied	Code/Flag verified in database applied?*

Total number of occurrences: 0

Step 7 Completed Initials: SJG Date: 2/12/2024

After all of the above steps have been completed, save and print the worksheet, attach all applicable supplemental information and sign below.

I acknowledge that the data verification and validation process has been completed for the data identified above in accordance with the procedures described in the CMC QAPP, SOP #2

Darch County

2/12/24

Data Verifier/Validator Signature

Date

COMPLETION OF DATA VERIFICATION AND VALIDATION PROCESS

Once the data verification and validation process has been completed for the <u>entire study</u> (note: if the worksheet is for a subset of the data from a study, be sure ALL the data for the entire study is included before final completion of the data verification and validation process), notify the NMSQUID administrator that the process is complete and request that "V V in STORET" be added to the project title.

Once all data have been verified and validated for a study provide <u>copies</u> of ALL *Data Verification and Validation Worksheets* and attachments associated with the study to the Quality Assurance Officer and retain <u>originals</u> in the project binder.

Attachment 1.2 SWQB Validation Codes

When deficiencies are identified through the data verification and validation process, AMAFCA documents or "flags" the deficiencies by assigning validation codes. All data collected from the last compliant QC sample and up to the next compliant QC sample are assigned validation codes. The validation code alerts the data user that the results are outside QA control limits and may require re-sampling or a separate, qualitative analysis based on professional judgment.

Validation Code	Definition	WQX Equivalent
A1	Sample not collected according to SOP	
B1	Chemical was detected in the field blank at a concentration less than 5% of the sample concentration.	
BN	Blanks NOT collected during sampling run	
BU	Detection in blank. Analyte was not detected in this sample above the method's sample detection limit.	BU
RB1	Chemical was detected in the field blank at a concentration greater than or equal to 5% of the sample concentration. Results for this sample are rejected because they may be the result of contamination; the results may not be reported or used for regulatory compliance purposes.	В
R1	Rejected due to incorrect sample preservation	R
R2	Rejected due to equipment failure in the field	R
R3	Rejected based on best professional judgment	R
D1	Spike recovery not within method acceptance limits	
F1	Sample filter time exceeded	
J1	Estimated: the analyte was positively identified and the associated value is an approximate concentration of the analyte in the sample	J
K1	Holding time violation	Н
Ea	Estimated-Incubation temperature between 35.5 and 38.0° Celsius	
Er	Rejected-Incubation temperature < 34.5 or >38.0° Celsius	
PD1	Percent difference between duplicate samples excessive	
S1	Per SLD, uncertainties (sigmas) are expressed as one standard deviation, i.e. one standard error. Small negative or positive values that are less than two standard deviations should be interpreted as "less than the detection limit."	
S2	Data are suspect but deemed usable based on best professional judgment; documentation of justification is required and should be included in the Data Verification and Validation Packet and reported with results	
Z1	Macroinvertebrate data did not meet QC criteria specified in Section 2.5 of QAPP	
H1	Habitat data did not meet QC criteria specified in Section 2.5 of QAPP	

Attachment 1.1 Water Quality Sample Data Verification and Validation Worksheet

Study Name: <u>Compliance Monitoring Cooperative (CMC)</u> Year: <u>FY 2024 (December 2023 – Dry Season Sample)</u> Project Coordinator: <u>For Data Review and Reporting – SJG, BHI</u> V&V Reviewer: <u>SJG</u> Data covered by this worksheet: <u>Rio Grande South – 12/14/2023</u> Version of Verification/Validation Procedures: <u>QAPP – AMAFCA SOP #5 (7/2022</u>)

Step 1: Verify Field Data

A. Are all Field Data forms present and complete? Xes No

If yes, proceed; if no, attempt to locate missing forms, then indicate any remaining missing forms and action taken.

Missing Field Data Forms	Action Taken

Total number of occurrences: 0

B. Are station name and ID, and sampling date and time on forms consistent with database? \boxtimes Yes \square No If yes, proceed; if no, indicate errors identified, correct errors in database and re-verify.

Station and Parameter	Action Taken	Re-verified?

Total number of occurrences: 0

C. Are field data on forms consistent with database? \square Yes \square No

If yes, proceed; if no, indicate errors identified, correct errors in database and re-verify.

Station	Sampling Date	Parameter(s) Corrected	Re-verified?

Total number of occurrences: 0

D. Are RIDs correct and associated with the correct analytical suite, media subdivision (e.g. surface water, municipal waste, etc.) and activity type (e.g. Field observation, Routine sample, QA sample etc.)?

Yes No

If yes, proceed; if no, indicate errors identified, correct errors in database and re-verify

Station/RID	Sampling Date	RID Corrected	Re-verified?

Total number of occurrences: 0

Step 1 Completed Initials: SJG Date: 2/12/2024

Step 2: Verify Data Deliverables

A. Have all data in question been delivered? Xes ON

If yes, proceed; if no, indicate RIDs with missing data (samples or blanks) or attach report with applicable RIDs highlighted. Contact data source and indicate action taken. Complete this step upon receipt of all missing data.

RID	Submittal Date	Missing Data/Parameters	Date of Initial Verification	Date Missing Data Were Received

Total number of occurrences: 0

B. Do all of the analytical suites have the correct number and type of analytes.

If yes, proceed; if no, indicate RIDs with missing or incorrect analyte(s) or attach report with applicable RIDs highlighted. Contact data source and indicate action taken.

RID	Submittal Date	Missing or Incorrect Parameters	Action Taken	Re-verified?

Step 2 Completed Initials: SJG Date: 2/12/2024

Step 3: Verify Flow Data

*Note – Not Applicable – no flow data provided with CMC sample collection A._Identify incorrect or missing data on the flow calculation spreadsheet and correct errors.

Station	Sampling Date	Flow data missing or incorrect?

Total number of occurrences: 0

B. Identify incorrect or missing discharge measurements, correct errors in database and re-verify.

Station	Sampling Date	Flow data missing or incorrect?	Re-verified?

 Total number of occurrences: 0
 Not Applicable

 Image: Signed state stat

Step 4: Verify Analytical Results for Missing Information or Questionable Results

Were any results with missing/questionable information identified?

If no, proceed; if yes, indicate results with missing information or questionable results or attach report. Contact data source and indicate action taken. Complete this step upon receipt of missing information or clarification of questionable results (clarify questionable results only, DO NOT change results without written approval (from lab or QA officer) and associated documentation).

RID	Sample Date	Missing or Questionable Information/Results	Action Taken
Rio Grande South	<u>12/14/2023</u>	Lab report lists two Total Phosphorous results and the dissolved	BHI emailed AMAFCA on 2/7/24 and BHI added note to the lab report.

		and total are not clear in the reporting.	
Rio Grande South	<u>12/14/2023</u>	Lab report has mis-labeled the Rio Grande South Semivolatile data as Rio Grande North.	BHI emailed AMAFCA on 2/7/24 to ask that they clarify this with the lab and BHI added note to the lab report.

*Note – Eurofins lab report number 2312898.

Total number of occurrences: 2

Step 4 Completed Initials: <u>SJG</u> Date: <u>2/12/2024</u>

Step 5: Validate Blanks Results

Were any analytes of concern detected in blank samples?
Yes Xo

If no, proceed; if yes, list results that need to have validation codes applied in the database save these results as an excel file and forward to QA officer or Program Manager, with a request to add appropriate validation codes to database. Complete this step after verifying that validation codes have been added to database correctly.

RID	Sample Date	Parameter	[Blank]	[Sample]	Validatio n Code/Fla g Applied	Code/Flag verified in database?

*See validation procedures to determine which associated data need to be flagged and include on Validation Codes Form.

Total number of occurrences: 0

			Step 5 Completed	Initials: <u>SJG</u>	Date: 2/12/2024
Step 6: Validate Holding Times Violations Were any samples submitted that did not meet specified holding times?	☐ Yes	🛛 No			

If no, proceed; if yes, list results that need to have validation codes applied in the database save these results as an excel file and forward to QA officer or Program Manager with a request to add appropriate validation codes to database. Complete this step after verifying that validation codes/flags have been added to database.

RID	Sample Date	Parameter	[Blank]	[Sample]	Validation Code/Flag Applied	Code/Flag verified in database to ALL associated data?*

*See validation procedures to determine which associated data need to be flagged.

*Note – Lab reports lists pH with hold time flag. Database uses field data reported pH, so this is hold time is not applicable.

Total number of occurrences: 0

Step 6 Completed Initials: SJG Date: 2/12/2024

Step 7: Validate Replicate/Duplicate Results (if applicable)

Were any replicate/duplicate pairs submitted outside of the established control limit of 20%? \Box Yes \boxtimes No

If no, proceed; if yes, list results that need to have validation codes applied in the database save these results as an excel file and forward to QA officer or Program Manager with a request to add appropriate validation codes to database. Complete this step after verifying that validation codes/flags have been added to database.

RID	Pairs	Replicate or Duplicate?	Sample Date	Parameter	RPD	Validation Code/Flag Applied	Code/Flag verified in database applied?*

Total number of occurrences: 0

Step 7 Completed Initials: SJG Date: 2/12/2024

After all of the above steps have been completed, save and print the worksheet, attach all applicable supplemental information and sign below.

I acknowledge that the data verification and validation process has been completed for the data identified above in accordance with the procedures described in the CMC QAPP, SOP #2

Darch Count

2/12/24

Data Verifier/Validator Signature

Date

COMPLETION OF DATA VERIFICATION AND VALIDATION PROCESS

Once the data verification and validation process has been completed for the <u>entire study</u> (note: if the worksheet is for a subset of the data from a study, be sure ALL the data for the entire study is included before final completion of the data verification and validation process), notify the NMSQUID administrator that the process is complete and request that "V V in STORET" be added to the project title.

Once all data have been verified and validated for a study provide <u>copies</u> of ALL *Data Verification and Validation Worksheets* and attachments associated with the study to the Quality Assurance Officer and retain <u>originals</u> in the project binder.

Attachment 1.2 SWQB Validation Codes

When deficiencies are identified through the data verification and validation process, AMAFCA documents or "flags" the deficiencies by assigning validation codes. All data collected from the last compliant QC sample and up to the next compliant QC sample are assigned validation codes. The validation code alerts the data user that the results are outside QA control limits and may require re-sampling or a separate, qualitative analysis based on professional judgment.

Validation Code	Definition	WQX Equivalent
A1	Sample not collected according to SOP	
B1	Chemical was detected in the field blank at a concentration less than 5% of the sample concentration.	
BN	Blanks NOT collected during sampling run	
BU	Detection in blank. Analyte was not detected in this sample above the method's sample detection limit.	BU
RB1	Chemical was detected in the field blank at a concentration greater than or equal to 5% of the sample concentration. Results for this sample are rejected because they may be the result of contamination; the results may not be reported or used for regulatory compliance purposes.	В
R1	Rejected due to incorrect sample preservation	R
R2	Rejected due to equipment failure in the field	R
R3	Rejected based on best professional judgment	R
D1	Spike recovery not within method acceptance limits	
F1	Sample filter time exceeded	
J1	Estimated: the analyte was positively identified and the associated value is an approximate concentration of the analyte in the sample	J
K1	Holding time violation	Н
Ea	Estimated-Incubation temperature between 35.5 and 38.0° Celsius	
Er	Rejected-Incubation temperature < 34.5 or >38.0° Celsius	
PD1	Percent difference between duplicate samples excessive	
S1	Per SLD, uncertainties (sigmas) are expressed as one standard deviation, i.e. one standard error. Small negative or positive values that are less than two standard deviations should be interpreted as "less than the detection limit."	
S2	Data are suspect but deemed usable based on best professional judgment; documentation of justification is required and should be included in the Data Verification and Validation Packet and reported with results	
Z1	Macroinvertebrate data did not meet QC criteria specified in Section 2.5 of QAPP	
H1	Habitat data did not meet QC criteria specified in Section 2.5 of QAPP	

Attachment 1.1 Water Quality Sample Data Verification and Validation Worksheet

Study Name: <u>Compliance Monitoring Cooperative (CMC)</u> Year: <u>FY 2024 (June 2024 – Dry Season Sample)</u> Project Coordinator: <u>For Data Review and Reporting – SJG, BHI</u> V&V Reviewer: <u>SJG</u> Data covered by this worksheet: <u>Rio Grande South – 6/27/2024</u> Version of Verification/Validation Procedures: <u>QAPP – AMAFCA SOP #5 (7/2022</u>)

Step 1: Verify Field Data

A. Are all Field Data forms present and complete? Xes No

If yes, proceed; if no, attempt to locate missing forms, then indicate any remaining missing forms and action taken.

Missing Field Data Forms	Action Taken

Total number of occurrences: 0

B. Are station name and ID, and sampling date and time on forms consistent with database? \boxtimes Yes \square No If yes, proceed; if no, indicate errors identified, correct errors in database and re-verify.

Station and Parameter	Action Taken	Re-verified?

Total number of occurrences: 0

C. Are field data on forms consistent with database? \square Yes \square No

If yes, proceed; if no, indicate errors identified, correct errors in database and re-verify.

Station	Sampling Date	Parameter(s) Corrected	Re-verified?

Total number of occurrences: 0

D. Are RIDs correct and associated with the correct analytical suite, media subdivision (e.g. surface water, municipal waste, etc.) and activity type (e.g. Field observation, Routine sample, QA sample etc.)?

🛛 Yes 🗌 No

If yes, proceed; if no, indicate errors identified, correct errors in database and re-verify

Station/RID	Sampling Date	RID Corrected	Re-verified?

Total number of occurrences: 0

Step 1 Completed Initials: SJG Date: 8/23/2024

Step 2: Verify Data Deliverables

A. Have all data in question been delivered? \square Yes \square No

If yes, proceed; if no, indicate RIDs with missing data (samples or blanks) or attach report with applicable RIDs highlighted. Contact data source and indicate action taken. Complete this step upon receipt of all missing data.

RID	Submittal Date	Missing Data/Parameters	Date of Initial Verification	Date Missing Data Were Received

Total number of occurrences: 0

B. Do all of the analytical suites have the	e correct number and type of analytes.	🗌 Yes	🖾 No
---	--	-------	------

If yes, proceed; if no, indicate RIDs with missing or incorrect analyte(s) or attach report with applicable RIDs highlighted. Contact data source and indicate action taken.

RID	Submittal Date	Missing or Incorrect Parameters	Action Taken	Re-verified?
		Refer to Step 4 for list and missing analytes.		

Step 2 Completed Initials: SJG Date: 8/23/2024

Step 3: Verify Flow Data

*Note – Not Applicable – no flow data provided with CMC sample collection

A._Identify incorrect or missing data on the flow calculation spreadsheet and correct errors.

Station	Sampling Date	Flow data missing or incorrect?

Total number of occurrences: 0

B. Identify incorrect or missing discharge measurements, correct errors in database and re-verify.

Station	Sampling Date	Flow data missing or incorrect?	Re-verified?

Total number of occurrences: 0

Not Applicable		
	1-11-010	B-1- 0/00/0004

Step 3 Completed Initials: SJG Date: 8/23/2024

Step 4: Verify Analytical Results for Missing Information or Questionable Results

Were any results with missing/questionable information identified? Xes No

If no, proceed; if yes, indicate results with missing information or questionable results or attach report. Contact data source and indicate action taken. Complete this step upon receipt of missing information or clarification of questionable results (clarify questionable results only, DO NOT change results without written approval (from lab or QA officer) and associated documentation).

RID	Sample Date	Missing or Questionable Information/Results	Action Taken
Rio Grande South	6/27/2024	DO field data, collection protocol may have resulted in low DO reading.	Have reached out to the sampler there was a delay during sampling that could account for the low DO reading.
Rio Grande South	6/27/2024	Lab report did not include results for Ammonia (mg/L as N)	Notified AMAFCA (CMC member) of the missing parameter.

Rio Grande South	6/27/2024	Lab report did not include results for Benzo[a]pyrene	Notified AMAFCA (CMC member) of the missing
			parameter.

*Note – Eurofins Job ID: 885-7077-1.

Total number of occurrences: 3

Step 4 Completed Initials: <u>SJG</u> Date: <u>8/23/2024</u>

Step 5: Validate Blanks Results

Were any analytes of concern detected in blank samples? \Box Yes \boxtimes No

If no, proceed; if yes, list results that need to have validation codes applied in the database save these results as an excel file and forward to QA officer or Program Manager, with a request to add appropriate validation codes to database. Complete this step after verifying that validation codes have been added to database correctly.

RID	Sample Date	Parameter	[Blank]	[Sample]	Validatio n Code/Fla g Applied	Code/Flag verified in database?

*See validation procedures to determine which associated data need to be flagged and include on Validation Codes Form.

Total number of occurrences: 0

Step 5 Completed Initials: <u>SJG</u> Date: <u>8/23/2024</u>

Step 6: Validate Holding Times Violations

Were any samples submitted that did not meet specified holding times? Xes ON

If no, proceed; if yes, list results that need to have validation codes applied in the database save these results as an excel file and forward to QA officer or Program Manager with a request to add appropriate validation codes to database. Complete this step after verifying that validation codes/flags have been added to database.

RID	Sample Date	Parameter	[Blank]	[Sample]	Validation Code/Flag Applied	Code/Flag verified in database to ALL associated data?*
-----	----------------	-----------	---------	----------	------------------------------------	---

Rio Grande South	6/272024	Tetrahydro- furan	yes	Н	Yes
Rio Grande South	6/272024	Dieldrin	yes	Η	Yes

*See validation procedures to determine which associated data need to be flagged.

*Note – Lab reports lists pH with hold time flag. Database uses field data reported pH, so this is hold time is not applicable.

Total number of occurrences: 2

Step 6 Completed Initials: SJG Date: 8/23/2024

Step 7: Validate Replicate/Duplicate Results (if applicable)

Were any replicate/duplicate pairs submitted outside of the established control limit of 20%? \boxtimes Yes $\hfill\square$ No

If no, proceed; if yes, list results that need to have validation codes applied in the database save these results as an excel file and forward to QA officer or Program Manager with a request to add appropriate validation codes to database. Complete this step after verifying that validation codes/flags have been added to database.

RID	Pairs	Replicate or Duplicate?	Sample Date	Parameter	RPD	Validation Code/Flag Applied	Code/Flag verified in database applied?*
Rio Grande South	Lab Duplicate	Lab Duplicate	6/27/2024	Dieldrin		yes	*+
Rio Grande South	Lab Duplicate	Lab Duplicate	6/27/2024	5 Semivolatile Organic Compounds		yes	*+

Total number of occurrences: 6

Step 7 Completed Initials: SJG Date: 8/23/2024

After all of the above steps have been completed, save and print the worksheet, attach all applicable supplemental information and sign below.

I acknowledge that the data verification and validation process has been completed for the data identified above in accordance with the procedures described in the CMC QAPP, SOP #2

Sach County

8/23/2024

Data Verifier/Validator Signature

Date

COMPLETION OF DATA VERIFICATION AND VALIDATION PROCESS

Once the data verification and validation process has been completed for the <u>entire study</u> (note: if the worksheet is for a subset of the data from a study, be sure ALL the data for the entire study is included before final completion of the data verification and validation process), notify the NMSQUID administrator that the process is complete and request that "V V in STORET" be added to the project title.

Once all data have been verified and validated for a study provide <u>copies</u> of ALL *Data Verification and Validation Worksheets* and attachments associated with the study to the Quality Assurance Officer and retain <u>originals</u> in the project binder.

Attachment 1.2 SWQB Validation Codes

When deficiencies are identified through the data verification and validation process, AMAFCA documents or "flags" the deficiencies by assigning validation codes. All data collected from the last compliant QC sample and up to the next compliant QC sample are assigned validation codes. The validation code alerts the data user that the results are outside QA control limits and may require re-sampling or a separate, qualitative analysis based on professional judgment.

Validation Code	Definition	WQX Equivalent
A1	Sample not collected according to SOP	
B1	Chemical was detected in the field blank at a concentration less than 5% of the sample concentration.	
BN	Blanks NOT collected during sampling run	
BU	Detection in blank. Analyte was not detected in this sample above the method's sample detection limit.	BU
RB1	Chemical was detected in the field blank at a concentration greater than or equal to 5% of the sample concentration. Results for this sample are rejected because they may be the result of contamination; the results may not be reported or used for regulatory compliance purposes.	В
R1	Rejected due to incorrect sample preservation	R
R2	Rejected due to equipment failure in the field	R
R3	Rejected based on best professional judgment	R
D1	Spike recovery not within method acceptance limits	
F1	Sample filter time exceeded	
J1	Estimated: the analyte was positively identified and the associated value is an approximate concentration of the analyte in the sample	J
K1	Holding time violation	Н
Ea	Estimated-Incubation temperature between 35.5 and 38.0° Celsius	
Er	Rejected-Incubation temperature < 34.5 or >38.0° Celsius	
PD1	Percent difference between duplicate samples excessive	
S1	Per SLD, uncertainties (sigmas) are expressed as one standard deviation, i.e. one standard error. Small negative or positive values that are less than two standard deviations should be interpreted as "less than the detection limit."	
S2	Data are suspect but deemed usable based on best professional judgment; documentation of justification is required and should be included in the Data Verification and Validation Packet and reported with results	
Z1	Macroinvertebrate data did not meet QC criteria specified in Section 2.5 of QAPP	
H1	Habitat data did not meet QC criteria specified in Section 2.5 of QAPP	

Attachment 1.1 Water Quality Sample Data Verification and Validation Worksheet

Study Name: <u>Compliance Monitoring Cooperative (CMC)</u> Year: <u>FY 2024 (June 2024 – Dry Season Sample)</u> Project Coordinator: <u>For Data Review and Reporting – SJG, BHI</u> V&V Reviewer: <u>SJG</u> Data covered by this worksheet: <u>Rio Grande (RG) North – 6/26/2024</u> Version of Verification/Validation Procedures: <u>QAPP – AMAFCA SOP #5 (7/2022)</u>

Step 1: Verify Field Data

A. Are all Field Data forms present and complete? Xes No

If yes, proceed; if no, attempt to locate missing forms, then indicate any remaining missing forms and action taken.

Missing Field Data Forms	Action Taken

Total number of occurrences: 0

B. Are station name and ID, and sampling date and time on forms consistent with database? \boxtimes Yes \square No If yes, proceed; if no, indicate errors identified, correct errors in database and re-verify.

Station and Parameter	Action Taken	Re-verified?

Total number of occurrences: 0

C. Are field data on forms consistent with database? \square Yes \square No

If yes, proceed; if no, indicate errors identified, correct errors in database and re-verify.

Station	Sampling Date	Parameter(s) Corrected	Re-verified?

Total number of occurrences: 0

D. Are RIDs correct and associated with the correct analytical suite, media subdivision (e.g. surface water, municipal waste, etc.) and activity type (e.g. Field observation, Routine sample, QA sample etc.)?

🛛 Yes 🗌 No

If yes, proceed; if no, indicate errors identified, correct errors in database and re-verify

.....

Station/RID	Sampling Date	RID Corrected	Re-verified?

Total number of occurrences: 0

Step 1 Completed Initials: SJG Date: 8/21/2024

Step 2: Verify Data Deliverables

A. Have all data in question been delivered? \Box Yes \Box No

If yes, proceed; if no, indicate RIDs with missing data (samples or blanks) or attach report with applicable RIDs highlighted. Contact data source and indicate action taken. Complete this step upon receipt of all missing data.

RID	Submittal Date	Missing Data/Parameters	Date of Initial Verification	Date Missing Data Were Received

Total number of occurrences: 0

B. Do all of the analytical suites have the correct number and type of analytes. Yes Xes No

If yes, proceed; if no, indicate RIDs with missing or incorrect analyte(s) or attach report with applicable RIDs highlighted. Contact data source and indicate action taken.

RID	Submittal Date	Missing or Incorrect Parameters	Action Taken	Re-verified?
	-	Refer to Step 4 for list and missing analytes.		

Total number of occurrences: 0

Step 2 Completed Initials: SJG Date: 8/21/2024

Step 3: Verify Flow Data

*Note – Not Applicable – no flow data provided with CMC sample collection

A._Identify incorrect or missing data on the flow calculation spreadsheet and correct errors.

Station	Sampling Date	Flow data missing or incorrect?

Total number of occurrences: 0

B. Identify incorrect or missing discharge measurements, correct errors in database and re-verify.

Station	Sampling Date	Flow data missing or incorrect?	Re-verified?

Total number of occurrences: 0

<u>Not Applicable</u> ☐ Step 3 Completed Initials: SJG Date: 8/21/2024

Step 4: Verify Analytical Results for Missing Information or Questionable Results

Were any results with missing/questionable information identified?

If no, proceed; if yes, indicate results with missing information or questionable results or attach report. Contact data source and indicate action taken. Complete this step upon receipt of missing information or clarification of questionable results (clarify questionable results only, DO NOT change results without written approval (from lab or QA officer) and associated documentation).

RID	Sample Date	Missing or Questionable Information/Results	Action Taken
Rio Grande North	6/26/2024	DO field data, collection protocol may have resulted in low DO reading.	Have reached out to the sampler there was a delay during sampling that could account for the low DO reading.
Rio Grande North	6/26/2024	Lab report did not include results for Ammonia (mg/L as N)	Notified AMAFCA (CMC member) of the missing parameter.
Rio Grande North	6/26/2024	Lab report did not include results for Benzo[a]pyrene	Notified AMAFCA (CMC member) of the missing parameter.

Eurofins Job ID: 885-7077-1. Total number of occurrences: 3

Step 4 Completed Initials: SJG Date: 8/21/2024

Step 5: Validate Blanks Results

Were any analytes of concern detected in blank samples? Yes No

If no, proceed; if yes, list results that need to have validation codes applied in the database save these results as an excel file and forward to QA officer or Program Manager, with a request to add appropriate validation codes to database. Complete this step after verifying that validation codes have been added to database correctly.

RID	Sample Date	Parameter	[Blank]	[Sample]	Validatio n Code/Fla g Applied	Code/Flag verified in database?

*See validation procedures to determine which associated data need to be flagged and include on Validation Codes Form.

Total number of occurrences: 0

	Step 5 Completed	Initials: <u>SJG</u>	Date: 8/21/2024
Step 6: Validate Holding Times Violations			
Were any samples submitted that did not meet specified holding times? Xes	No		

If no, proceed; if yes, list results that need to have validation codes applied in the database save these results as an excel file and forward to QA officer or Program Manager with a request to add appropriate validation codes to database. Complete this step after verifying that validation codes/flags have been added to database.

RID	Sample Date	Parameter	[Blank]	[Sample]	Validation Code/Flag Applied	Code/Flag verified in database to ALL associated data?*
Rio Grande North	6/26/2024	Tetrahydro- furan		yes	Н	Yes
Rio Grande North	6/26/2024	Dieldrin		yes	Н	Yes

*See validation procedures to determine which associated data need to be flagged.

*Note – Lab reports lists pH with hold time flag. Database uses field data reported pH, so this is hold time is not applicable. The BOD has a hold time flag. The Rio Grande North sample was held until the CMC was sure the monitoring event was a qualifying storm event. This led to the hold time flag for BOD.

Total number of occurrences: 2

Step 6 Completed Initials: SJG Date: 8/21/2024

Step 7: Validate Replicate/Duplicate Results (if applicable)

Were any replicate/duplicate pairs submitted outside of the established control limit of 20%? \boxtimes Yes \square No

If no, proceed; if yes, list results that need to have validation codes applied in the database save these results as an excel file and forward to QA officer or Program Manager with a request to add appropriate validation codes to database. Complete this step after verifying that validation codes/flags have been added to database.

RID	Pairs	Replicate or Duplicate?	Sample Date	Parameter	RPD	Validation Code/Flag Applied	Code/Flag verified in database applied?*
Rio Grande North	Lab Duplicate	Lab Duplicate	6/26/2024	Dieldrin		yes	*+
Rio Grande North	Lab Duplicate	Lab Duplicate	6/26/2024	5 Semivolatile Organic Compounds		yes	*+

Total number of occurrences: 6

Step 7 Completed Initials: SJG Date: 8/21/2024

After all of the above steps have been completed, save and print the worksheet, attach all applicable supplemental information and sign below.

I acknowledge that the data verification and validation process has been completed for the data identified above in accordance with the procedures described in the CMC QAPP, SOP #2

Sach County

8/21/2024

Data Verifier/Validator Signature

Date

COMPLETION OF DATA VERIFICATION AND VALIDATION PROCESS

Once the data verification and validation process has been completed for the <u>entire study</u> (note: if the worksheet is for a subset of the data from a study, be sure ALL the data for the entire study is included before final completion of the data verification and validation process), notify the NMSQUID administrator that the process is complete and request that "V V in STORET" be added to the project title.

Once all data have been verified and validated for a study provide <u>copies</u> of ALL *Data Verification and Validation Worksheets* and attachments associated with the study to the Quality Assurance Officer and retain <u>originals</u> in the project binder.

Attachment 1.2 SWQB Validation Codes

When deficiencies are identified through the data verification and validation process, AMAFCA documents or "flags" the deficiencies by assigning validation codes. All data collected from the last compliant QC sample and up to the next compliant QC sample are assigned validation codes. The validation code alerts the data user that the results are outside QA control limits and may require re-sampling or a separate, qualitative analysis based on professional judgment.

Validation Code	Definition	WQX Equivalent
A1	Sample not collected according to SOP	
B1	Chemical was detected in the field blank at a concentration less than 5% of the sample concentration.	
BN	Blanks NOT collected during sampling run	
BU	Detection in blank. Analyte was not detected in this sample above the method's sample detection limit.	BU
RB1	Chemical was detected in the field blank at a concentration greater than or equal to 5% of the sample concentration. Results for this sample are rejected because they may be the result of contamination; the results may not be reported or used for regulatory compliance purposes.	В
R1	Rejected due to incorrect sample preservation	R
R2	Rejected due to equipment failure in the field	R
R3	Rejected based on best professional judgment	R
D1	Spike recovery not within method acceptance limits	
F1	Sample filter time exceeded	
J1	Estimated: the analyte was positively identified and the associated value is an approximate concentration of the analyte in the sample	J
K1	Holding time violation	Н
Ea	Estimated-Incubation temperature between 35.5 and 38.0° Celsius	
Er	Rejected-Incubation temperature < 34.5 or >38.0° Celsius	
PD1	Percent difference between duplicate samples excessive	
S1	Per SLD, uncertainties (sigmas) are expressed as one standard deviation, i.e. one standard error. Small negative or positive values that are less than two standard deviations should be interpreted as "less than the detection limit."	
S2	Data are suspect but deemed usable based on best professional judgment; documentation of justification is required and should be included in the Data Verification and Validation Packet and reported with results	
Z1	Macroinvertebrate data did not meet QC criteria specified in Section 2.5 of QAPP	
H1	Habitat data did not meet QC criteria specified in Section 2.5 of QAPP	

Attachment 1.1 Water Quality Sample Data Verification and Validation Worksheet

Study Name: <u>Compliance Monitoring Cooperative (CMC)</u> Year: <u>FY 2024 (June 2024 – Dry Season Sample)</u> Project Coordinator: <u>For Data Review and Reporting – SJG, BHI</u> V&V Reviewer: <u>SJG</u> Data covered by this worksheet: <u>Alameda – 6/26/2024– E. coli Only Sample</u> Version of Verification/Validation Procedures: QAPP –AMAFCA SOP #5 (7/2022)

Step 1: Verify Field Data

A. Are all Field Data forms present and complete? Xes No

If yes, proceed; if no, attempt to locate missing forms, then indicate any remaining missing forms and action taken.

Missing Field Data Forms	Action Taken

Total number of occurrences: 0

B. Are station name and ID, and sampling date and time on forms consistent with database? \boxtimes Yes \square No If yes, proceed; if no, indicate errors identified, correct errors in database and re-verify.

Station and Parameter	Action Taken	Re-verified?

Total number of occurrences: 0

C. Are field data on forms consistent with database? \square Yes \square No

If yes, proceed; if no, indicate errors identified, correct errors in database and re-verify.

Station	Sampling Date	Parameter(s) Corrected	Re-verified?

Total number of occurrences: 0

D. Are RIDs correct and associated with the correct analytical suite, media subdivision (e.g. surface water, municipal waste, etc.) and activity type (e.g. Field observation, Routine sample, QA sample etc.)?

Yes No

If yes, proceed; if no, indicate errors identified, correct errors in database and re-verify

Station/RID	Sampling Date	RID Corrected	Re-verified?

Total number of occurrences: 0

Step 1 Completed Initials: SJG Date: 8/13/2024

Step 2: Verify Data Deliverables

A. Have all data in question been delivered? Xes No

If yes, proceed; if no, indicate RIDs with missing data (samples or blanks) or attach report with applicable RIDs highlighted. Contact data source and indicate action taken. Complete this step upon receipt of all missing data.

RID	Submittal Date	Missing Data/Parameters	Date of Initial Verification	Date Missing Data Were Received

Total number of occurrences: 0

B. Do all of the analytical suites have the correct number and type of analytes. 🛛 Yes 🗌 No

If yes, proceed; if no, indicate RIDs with missing or incorrect analyte(s) or attach report with applicable RIDs highlighted. Contact data source and indicate action taken.

l Date F	Incorrect Parameters	Action Taken	Re-verified?
-		Parameters	

Step 2 Completed Initials: SJG Date: 8/13/2024

Step 3: Verify Flow Data

*Note – Not Applicable – no flow data provided with CMC sample collection

A._Identify incorrect or missing data on the flow calculation spreadsheet and correct errors.

Station	Sampling Date	Flow data missing or incorrect?

Total number of occurrences: 0

B. Identify incorrect or missing discharge measurements, correct errors in database and re-verify.

Station	Sampling Date	Flow data missing or incorrect?	Re-verified?

Total number of occurrences: 0	Not Applicable	Initiala, SIC	Data: 8/12/2024
	Step 3 Completed	Initials: <u>5jg</u>	Date: 8/13/2024
Step 4: Verify Analytical Results for Missing Information or Questionable Results			

Were any results with missing/questionable information identified? \Box Yes \boxtimes No

If no, proceed; if yes, indicate results with missing information or questionable results or attach report. Contact data source and indicate action taken. Complete this step upon receipt of missing information or clarification of questionable results (clarify questionable results only, DO NOT change results without written approval (from lab or QA officer) and associated documentation).

RID	Sample Date	Missing or Questionable Information/Results	Action Taken
	6/26/2024	DO field data, collection protocol may have resulted in low DO reading.	Have reached out to the sampler to determine if there were any issues during sampling that could account for the low DO reading.

Total number of occurrences: 1

Step 4 Completed Initials: <u>SJG</u> Date: <u>8/13/2024</u>

Step 5: Validate Blanks Results

Were any analytes of concern detected in blank samples? Yes No

If no, proceed; if yes, list results that need to have validation codes applied in the database save these results as an excel file and forward to QA officer or Program Manager, with a request to add appropriate validation codes to database. Complete this step after verifying that validation codes have been added to database correctly.

RID	Sample Date	Parameter	[Blank]	[Sample]	Validatio n Code/Fla g Applied	Code/Flag verified in database?

*See validation procedures to determine which associated data need to be flagged and include on Validation Codes Form.

Total number of occurrences: 0

	Step 5 Completed	Initials: <u>SJG</u>	Date: <u>8/13/2024</u>
Step 6: Validate Holding Times Violations			

Were any samples submitted that	t did not meet s	pecified holding t	times? 📋 Y	es 🖂 No
---------------------------------	------------------	--------------------	------------	---------

If no, proceed; if yes, list results that need to have validation codes applied in the database save these results as an excel file and forward to QA officer or Program Manager with a request to add appropriate validation codes to database. Complete this step after verifying that validation codes/flags have been added to database.

RID	Sample Date	Parameter	[Blank]	[Sample]	Validation Code/Flag Applied	Code/Flag verified in database to ALL associated data?*

*See validation procedures to determine which associated data need to be flagged. Total number of occurrences: 0

Step 6 Completed Initials: SJG Date: 8/13/2024

Step 7: Validate Replicate/Duplicate Results (if applicable)

Were any replicate/duplicate pairs submitted outside of the established control limit of 20%? \Box Yes \boxtimes No

If no, proceed; if yes, list results that need to have validation codes applied in the database save these results as an excel file and forward to QA officer or Program Manager with a request to add appropriate validation codes to database. Complete this step after verifying that validation codes/flags have been added to database.

RID Pairs	Replicate or Duplicate?	Sample Date	Parameter	RPD	Validation Code/Flag Applied	Code/Flag verified in database applied?*

N/A – no duplicate/replicate results

Total number of occurrences: 0

Step 7 Completed Initials: SJG Date: 8/13/2024

After all of the above steps have been completed, save and print the worksheet, attach all applicable supplemental information and sign below.

I acknowledge that the data verification and validation process has been completed for the data identified above in accordance with the procedures described in the CMC QAPP, SOP #2

Sarch County

Data Verifier/Validator Signature

8/13/24

Date

COMPLETION OF DATA VERIFICATION AND VALIDATION PROCESS

Once the data verification and validation process has been completed for the <u>entire study</u> (note: if the worksheet is for a subset of the data from a study, be sure ALL the data for the entire study is included before final completion of the data verification and validation process), notify the NMSQUID administrator that the process is complete and request that "V V in STORET" be added to the project title.

Once all data have been verified and validated for a study provide <u>copies</u> of ALL *Data Verification and Validation Worksheets* and attachments associated with the study to the Quality Assurance Officer and retain <u>originals</u> in the project binder.

Attachment 1.2 SWQB Validation Codes

When deficiencies are identified through the data verification and validation process, AMAFCA documents or "flags" the deficiencies by assigning validation codes. All data collected from the last compliant QC sample and up to the next compliant QC sample are assigned validation codes. The validation code alerts the data user that the results are outside QA control limits and may require re-sampling or a separate, qualitative analysis based on professional judgment.

Validation Code	Definition	WQX Equivalent
A1	Sample not collected according to SOP	
B1	Chemical was detected in the field blank at a concentration less than 5% of the sample concentration.	
BN	Blanks NOT collected during sampling run	
BU	Detection in blank. Analyte was not detected in this sample above the method's sample detection limit.	BU
RB1	Chemical was detected in the field blank at a concentration greater than or equal to 5% of the sample concentration. Results for this sample are rejected because they may be the result of contamination; the results may not be reported or used for regulatory compliance purposes.	В
R1	Rejected due to incorrect sample preservation	R
R2	Rejected due to equipment failure in the field	R
R3	Rejected based on best professional judgment	R
D1	Spike recovery not within method acceptance limits	
F1	Sample filter time exceeded	
J1	Estimated: the analyte was positively identified and the associated value is an approximate concentration of the analyte in the sample	J
K1	Holding time violation	Н
Ea	Estimated-Incubation temperature between 35.5 and 38.0° Celsius	
Er	Rejected-Incubation temperature < 34.5 or >38.0° Celsius	
PD1	Percent difference between duplicate samples excessive	
S1	Per SLD, uncertainties (sigmas) are expressed as one standard deviation, i.e. one standard error. Small negative or positive values that are less than two standard deviations should be interpreted as "less than the detection limit."	
S2	Data are suspect but deemed usable based on best professional judgment; documentation of justification is required and should be included in the Data Verification and Validation Packet and reported with results	
Z1	Macroinvertebrate data did not meet QC criteria specified in Section 2.5 of QAPP	
H1	Habitat data did not meet QC criteria specified in Section 2.5 of QAPP	